From fb58fa62400ba0e2cbe8703796d5573f5f91c398 Mon Sep 17 00:00:00 2001 From: EllangoK Date: Sat, 28 Jan 2023 15:37:01 -0500 Subject: [PATCH 01/54] xyz plot now saves sub grids if opts.grid_save also fixed no draw legend for z grid --- scripts/xyz_grid.py | 21 +++++++++++++-------- 1 file changed, 13 insertions(+), 8 deletions(-) diff --git a/scripts/xyz_grid.py b/scripts/xyz_grid.py index 3df40483..3122f6f6 100644 --- a/scripts/xyz_grid.py +++ b/scripts/xyz_grid.py @@ -286,23 +286,24 @@ def draw_xyz_grid(p, xs, ys, zs, x_labels, y_labels, z_labels, cell, draw_legend print("Unexpected error: draw_xyz_grid failed to return even a single processed image") return Processed(p, []) - grids = [None] * len(zs) + sub_grids = [None] * len(zs) for i in range(len(zs)): start_index = i * len(xs) * len(ys) end_index = start_index + len(xs) * len(ys) grid = images.image_grid(image_cache[start_index:end_index], rows=len(ys)) if draw_legend: grid = images.draw_grid_annotations(grid, cell_size[0], cell_size[1], hor_texts, ver_texts) - - grids[i] = grid + sub_grids[i] = grid if include_sub_grids and len(zs) > 1: processed_result.images.insert(i+1, grid) - original_grid_size = grids[0].size - grids = images.image_grid(grids, rows=1) - processed_result.images[0] = images.draw_grid_annotations(grids, original_grid_size[0], original_grid_size[1], title_texts, [[images.GridAnnotation()]]) + sub_grid_size = sub_grids[0].size + z_grid = images.image_grid(sub_grids, rows=1) + if draw_legend: + z_grid = images.draw_grid_annotations(z_grid, sub_grid_size[0], sub_grid_size[1], title_texts, [[images.GridAnnotation()]]) + processed_result.images[0] = z_grid - return processed_result + return processed_result, sub_grids class SharedSettingsStackHelper(object): @@ -576,7 +577,7 @@ class Script(scripts.Script): return res with SharedSettingsStackHelper(): - processed = draw_xyz_grid( + processed, sub_grids = draw_xyz_grid( p, xs=xs, ys=ys, @@ -592,6 +593,10 @@ class Script(scripts.Script): second_axes_processed=second_axes_processed ) + if opts.grid_save and len(sub_grids) > 1: + for sub_grid in sub_grids: + images.save_image(sub_grid, p.outpath_grids, "xyz_grid", info=grid_infotext[0], extension=opts.grid_format, prompt=p.prompt, seed=processed.seed, grid=True, p=p) + if opts.grid_save: images.save_image(processed.images[0], p.outpath_grids, "xyz_grid", info=grid_infotext[0], extension=opts.grid_format, prompt=p.prompt, seed=processed.seed, grid=True, p=p) From 920fe8057cb325e9835f70c0389499c51cbdd3b5 Mon Sep 17 00:00:00 2001 From: EllangoK Date: Sun, 29 Jan 2023 03:36:16 -0500 Subject: [PATCH 02/54] fixes #7284 btn unbound error --- modules/ui.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/modules/ui.py b/modules/ui.py index f1195692..7e193240 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -466,8 +466,8 @@ def create_ui(): width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="txt2img_width") height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="txt2img_height") + res_switch_btn = ToolButton(value=switch_values_symbol, elem_id="txt2img_res_switch_btn") if opts.dimensions_and_batch_together: - res_switch_btn = ToolButton(value=switch_values_symbol, elem_id="txt2img_res_switch_btn") with gr.Column(elem_id="txt2img_column_batch"): batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1, elem_id="txt2img_batch_count") batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1, elem_id="txt2img_batch_size") @@ -737,8 +737,8 @@ def create_ui(): width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="img2img_width") height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="img2img_height") + res_switch_btn = ToolButton(value=switch_values_symbol, elem_id="img2img_res_switch_btn") if opts.dimensions_and_batch_together: - res_switch_btn = ToolButton(value=switch_values_symbol, elem_id="img2img_res_switch_btn") with gr.Column(elem_id="img2img_column_batch"): batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1, elem_id="img2img_batch_count") batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1, elem_id="img2img_batch_size") From 7c53f81caf817a7e7dc9c2fafebfcce269ecb1d7 Mon Sep 17 00:00:00 2001 From: Yevhenii Hurin Date: Sun, 29 Jan 2023 15:29:03 +0200 Subject: [PATCH 03/54] Prompt selector for Prompt Matrix script --- scripts/prompt_matrix.py | 24 +++++++++++++++++------- 1 file changed, 17 insertions(+), 7 deletions(-) diff --git a/scripts/prompt_matrix.py b/scripts/prompt_matrix.py index dd95e588..702870ce 100644 --- a/scripts/prompt_matrix.py +++ b/scripts/prompt_matrix.py @@ -10,7 +10,7 @@ from modules import images from modules.processing import process_images, Processed from modules.shared import opts, cmd_opts, state import modules.sd_samplers - +from pprint import pprint def draw_xy_grid(xs, ys, x_label, y_label, cell): res = [] @@ -44,16 +44,23 @@ class Script(scripts.Script): def title(self): return "Prompt matrix" - def ui(self, is_img2img): + def ui(self, is_img2img): put_at_start = gr.Checkbox(label='Put variable parts at start of prompt', value=False, elem_id=self.elem_id("put_at_start")) different_seeds = gr.Checkbox(label='Use different seed for each picture', value=False, elem_id=self.elem_id("different_seeds")) + # Radio buttons for selecting the prompt between positive and negative + prompt_type = gr.Radio(["positive", "negative"], label="Select prompt", elem_id=self.elem_id("prompt_type"), value="positive") - return [put_at_start, different_seeds] + return [put_at_start, different_seeds, prompt_type] - def run(self, p, put_at_start, different_seeds): + def run(self, p, put_at_start, different_seeds, prompt_type): modules.processing.fix_seed(p) + # Raise error if promp type is not positive or negative + if prompt_type not in ["positive", "negative"]: + raise ValueError(f"Unknown prompt type {prompt_type}") - original_prompt = p.prompt[0] if type(p.prompt) == list else p.prompt + prompt = p.prompt if prompt_type == "positive" else p.negative_prompt + original_prompt = prompt[0] if type(prompt) == list else prompt + positive_prompt = p.prompt[0] if type(p.prompt) == list else p.prompt all_prompts = [] prompt_matrix_parts = original_prompt.split("|") @@ -73,9 +80,12 @@ class Script(scripts.Script): print(f"Prompt matrix will create {len(all_prompts)} images using a total of {p.n_iter} batches.") - p.prompt = all_prompts + if prompt_type == "positive": + p.prompt = all_prompts + else: + p.negative_prompt = all_prompts p.seed = [p.seed + (i if different_seeds else 0) for i in range(len(all_prompts))] - p.prompt_for_display = original_prompt + p.prompt_for_display = positive_prompt processed = process_images(p) grid = images.image_grid(processed.images, p.batch_size, rows=1 << ((len(prompt_matrix_parts) - 1) // 2)) From edabd927296d389856ffc87c7789111a21a051a2 Mon Sep 17 00:00:00 2001 From: Yevhenii Hurin Date: Sun, 29 Jan 2023 16:05:59 +0200 Subject: [PATCH 04/54] Add delimiter selector to the Prompt Matrix script --- scripts/prompt_matrix.py | 47 ++++++++++++++++++++++++++++------------ 1 file changed, 33 insertions(+), 14 deletions(-) diff --git a/scripts/prompt_matrix.py b/scripts/prompt_matrix.py index 702870ce..89db9e63 100644 --- a/scripts/prompt_matrix.py +++ b/scripts/prompt_matrix.py @@ -12,6 +12,7 @@ from modules.shared import opts, cmd_opts, state import modules.sd_samplers from pprint import pprint + def draw_xy_grid(xs, ys, x_label, y_label, cell): res = [] @@ -33,7 +34,8 @@ def draw_xy_grid(xs, ys, x_label, y_label, cell): res.append(processed.images[0]) grid = images.image_grid(res, rows=len(ys)) - grid = images.draw_grid_annotations(grid, res[0].width, res[0].height, hor_texts, ver_texts) + grid = images.draw_grid_annotations( + grid, res[0].width, res[0].height, hor_texts, ver_texts) first_processed.images = [grid] @@ -45,56 +47,73 @@ class Script(scripts.Script): return "Prompt matrix" def ui(self, is_img2img): - put_at_start = gr.Checkbox(label='Put variable parts at start of prompt', value=False, elem_id=self.elem_id("put_at_start")) - different_seeds = gr.Checkbox(label='Use different seed for each picture', value=False, elem_id=self.elem_id("different_seeds")) + put_at_start = gr.Checkbox(label='Put variable parts at start of prompt', + value=False, elem_id=self.elem_id("put_at_start")) + different_seeds = gr.Checkbox( + label='Use different seed for each picture', value=False, elem_id=self.elem_id("different_seeds")) # Radio buttons for selecting the prompt between positive and negative - prompt_type = gr.Radio(["positive", "negative"], label="Select prompt", elem_id=self.elem_id("prompt_type"), value="positive") + prompt_type = gr.Radio(["positive", "negative"], label="Select prompt", + elem_id=self.elem_id("prompt_type"), value="positive") + # Radio buttons for selecting the delimiter to use in the resulting prompt + variations_delimiter = gr.Radio(["comma", "space"], label="Select delimiter", elem_id=self.elem_id( + "variations_delimiter"), value="comma") + return [put_at_start, different_seeds, prompt_type, variations_delimiter] - return [put_at_start, different_seeds, prompt_type] - - def run(self, p, put_at_start, different_seeds, prompt_type): + def run(self, p, put_at_start, different_seeds, prompt_type, variations_delimiter): modules.processing.fix_seed(p) # Raise error if promp type is not positive or negative if prompt_type not in ["positive", "negative"]: raise ValueError(f"Unknown prompt type {prompt_type}") + # Raise error if variations delimiter is not comma or space + if variations_delimiter not in ["comma", "space"]: + raise ValueError( + f"Unknown variations delimiter {variations_delimiter}") prompt = p.prompt if prompt_type == "positive" else p.negative_prompt original_prompt = prompt[0] if type(prompt) == list else prompt positive_prompt = p.prompt[0] if type(p.prompt) == list else p.prompt + delimiter = ", " if variations_delimiter == "comma" else " " + all_prompts = [] prompt_matrix_parts = original_prompt.split("|") combination_count = 2 ** (len(prompt_matrix_parts) - 1) for combination_num in range(combination_count): - selected_prompts = [text.strip().strip(',') for n, text in enumerate(prompt_matrix_parts[1:]) if combination_num & (1 << n)] + selected_prompts = [text.strip().strip(',') for n, text in enumerate( + prompt_matrix_parts[1:]) if combination_num & (1 << n)] if put_at_start: selected_prompts = selected_prompts + [prompt_matrix_parts[0]] else: selected_prompts = [prompt_matrix_parts[0]] + selected_prompts - all_prompts.append(", ".join(selected_prompts)) + all_prompts.append(delimiter.join(selected_prompts)) p.n_iter = math.ceil(len(all_prompts) / p.batch_size) p.do_not_save_grid = True - print(f"Prompt matrix will create {len(all_prompts)} images using a total of {p.n_iter} batches.") + print( + f"Prompt matrix will create {len(all_prompts)} images using a total of {p.n_iter} batches.") if prompt_type == "positive": p.prompt = all_prompts else: p.negative_prompt = all_prompts - p.seed = [p.seed + (i if different_seeds else 0) for i in range(len(all_prompts))] + p.seed = [p.seed + (i if different_seeds else 0) + for i in range(len(all_prompts))] p.prompt_for_display = positive_prompt processed = process_images(p) - grid = images.image_grid(processed.images, p.batch_size, rows=1 << ((len(prompt_matrix_parts) - 1) // 2)) - grid = images.draw_prompt_matrix(grid, p.width, p.height, prompt_matrix_parts) + grid = images.image_grid(processed.images, p.batch_size, rows=1 << ( + (len(prompt_matrix_parts) - 1) // 2)) + grid = images.draw_prompt_matrix( + grid, p.width, p.height, prompt_matrix_parts) processed.images.insert(0, grid) processed.index_of_first_image = 1 processed.infotexts.insert(0, processed.infotexts[0]) if opts.grid_save: - images.save_image(processed.images[0], p.outpath_grids, "prompt_matrix", extension=opts.grid_format, prompt=original_prompt, seed=processed.seed, grid=True, p=p) + images.save_image(processed.images[0], p.outpath_grids, "prompt_matrix", + extension=opts.grid_format, prompt=original_prompt, seed=processed.seed, grid=True, p=p) return processed From 5997457fd48c9c0fc31c9d96bf0b9c217585c526 Mon Sep 17 00:00:00 2001 From: Yevhenii Hurin Date: Sun, 29 Jan 2023 16:23:29 +0200 Subject: [PATCH 05/54] Compact options UI for Prompt Matrix --- scripts/prompt_matrix.py | 27 +++++++++++++++++---------- 1 file changed, 17 insertions(+), 10 deletions(-) diff --git a/scripts/prompt_matrix.py b/scripts/prompt_matrix.py index 89db9e63..03212b31 100644 --- a/scripts/prompt_matrix.py +++ b/scripts/prompt_matrix.py @@ -47,16 +47,23 @@ class Script(scripts.Script): return "Prompt matrix" def ui(self, is_img2img): - put_at_start = gr.Checkbox(label='Put variable parts at start of prompt', - value=False, elem_id=self.elem_id("put_at_start")) - different_seeds = gr.Checkbox( - label='Use different seed for each picture', value=False, elem_id=self.elem_id("different_seeds")) - # Radio buttons for selecting the prompt between positive and negative - prompt_type = gr.Radio(["positive", "negative"], label="Select prompt", - elem_id=self.elem_id("prompt_type"), value="positive") - # Radio buttons for selecting the delimiter to use in the resulting prompt - variations_delimiter = gr.Radio(["comma", "space"], label="Select delimiter", elem_id=self.elem_id( - "variations_delimiter"), value="comma") + gr.HTML('
') + with gr.Row(): + with gr.Column(): + put_at_start = gr.Checkbox(label='Put variable parts at start of prompt', + value=False, elem_id=self.elem_id("put_at_start")) + with gr.Column(): + # Radio buttons for selecting the prompt between positive and negative + prompt_type = gr.Radio(["positive", "negative"], label="Select prompt", + elem_id=self.elem_id("prompt_type"), value="positive") + with gr.Row(): + with gr.Column(): + different_seeds = gr.Checkbox( + label='Use different seed for each picture', value=False, elem_id=self.elem_id("different_seeds")) + with gr.Column(): + # Radio buttons for selecting the delimiter to use in the resulting prompt + variations_delimiter = gr.Radio(["comma", "space"], label="Select delimiter", elem_id=self.elem_id( + "variations_delimiter"), value="comma") return [put_at_start, different_seeds, prompt_type, variations_delimiter] def run(self, p, put_at_start, different_seeds, prompt_type, variations_delimiter): From 1e2b10d2dcdf41a6cce0c525c85ebd42a521e0f1 Mon Sep 17 00:00:00 2001 From: Yevhenii Hurin Date: Sun, 29 Jan 2023 17:14:46 +0200 Subject: [PATCH 06/54] Cleanup changes made by formatter --- scripts/prompt_matrix.py | 25 ++++++++----------------- 1 file changed, 8 insertions(+), 17 deletions(-) diff --git a/scripts/prompt_matrix.py b/scripts/prompt_matrix.py index 03212b31..de921ea8 100644 --- a/scripts/prompt_matrix.py +++ b/scripts/prompt_matrix.py @@ -10,7 +10,6 @@ from modules import images from modules.processing import process_images, Processed from modules.shared import opts, cmd_opts, state import modules.sd_samplers -from pprint import pprint def draw_xy_grid(xs, ys, x_label, y_label, cell): @@ -34,8 +33,7 @@ def draw_xy_grid(xs, ys, x_label, y_label, cell): res.append(processed.images[0]) grid = images.image_grid(res, rows=len(ys)) - grid = images.draw_grid_annotations( - grid, res[0].width, res[0].height, hor_texts, ver_texts) + grid = images.draw_grid_annotations(grid, res[0].width, res[0].height, hor_texts, ver_texts) first_processed.images = [grid] @@ -73,8 +71,7 @@ class Script(scripts.Script): raise ValueError(f"Unknown prompt type {prompt_type}") # Raise error if variations delimiter is not comma or space if variations_delimiter not in ["comma", "space"]: - raise ValueError( - f"Unknown variations delimiter {variations_delimiter}") + raise ValueError(f"Unknown variations delimiter {variations_delimiter}") prompt = p.prompt if prompt_type == "positive" else p.negative_prompt original_prompt = prompt[0] if type(prompt) == list else prompt @@ -86,8 +83,7 @@ class Script(scripts.Script): prompt_matrix_parts = original_prompt.split("|") combination_count = 2 ** (len(prompt_matrix_parts) - 1) for combination_num in range(combination_count): - selected_prompts = [text.strip().strip(',') for n, text in enumerate( - prompt_matrix_parts[1:]) if combination_num & (1 << n)] + selected_prompts = [text.strip().strip(',') for n, text in enumerate(prompt_matrix_parts[1:]) if combination_num & (1 << n)] if put_at_start: selected_prompts = selected_prompts + [prompt_matrix_parts[0]] @@ -99,28 +95,23 @@ class Script(scripts.Script): p.n_iter = math.ceil(len(all_prompts) / p.batch_size) p.do_not_save_grid = True - print( - f"Prompt matrix will create {len(all_prompts)} images using a total of {p.n_iter} batches.") + print(f"Prompt matrix will create {len(all_prompts)} images using a total of {p.n_iter} batches.") if prompt_type == "positive": p.prompt = all_prompts else: p.negative_prompt = all_prompts - p.seed = [p.seed + (i if different_seeds else 0) - for i in range(len(all_prompts))] + p.seed = [p.seed + (i if different_seeds else 0) for i in range(len(all_prompts))] p.prompt_for_display = positive_prompt processed = process_images(p) - grid = images.image_grid(processed.images, p.batch_size, rows=1 << ( - (len(prompt_matrix_parts) - 1) // 2)) - grid = images.draw_prompt_matrix( - grid, p.width, p.height, prompt_matrix_parts) + grid = images.image_grid(processed.images, p.batch_size, rows=1 << ((len(prompt_matrix_parts) - 1) // 2)) + grid = images.draw_prompt_matrix(grid, p.width, p.height, prompt_matrix_parts) processed.images.insert(0, grid) processed.index_of_first_image = 1 processed.infotexts.insert(0, processed.infotexts[0]) if opts.grid_save: - images.save_image(processed.images[0], p.outpath_grids, "prompt_matrix", - extension=opts.grid_format, prompt=original_prompt, seed=processed.seed, grid=True, p=p) + images.save_image(processed.images[0], p.outpath_grids, "prompt_matrix", extension=opts.grid_format, prompt=original_prompt, seed=processed.seed, grid=True, p=p) return processed From 938578e8a94883aa3c0075cf47eea64f66119541 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Mon, 30 Jan 2023 00:25:30 +0300 Subject: [PATCH 07/54] make it so that setting options in pasted infotext (like Clip Skip and ENSD) do not get applied directly and instead are added as temporary overrides --- modules/generation_parameters_copypaste.py | 201 ++++++++++++++------- modules/shared.py | 37 +++- modules/txt2img.py | 6 +- modules/ui.py | 40 +++- modules/ui_common.py | 6 +- 5 files changed, 210 insertions(+), 80 deletions(-) diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py index 3c098e0d..1292fead 100644 --- a/modules/generation_parameters_copypaste.py +++ b/modules/generation_parameters_copypaste.py @@ -1,4 +1,5 @@ import base64 +import html import io import math import os @@ -16,13 +17,23 @@ re_param = re.compile(re_param_code) re_imagesize = re.compile(r"^(\d+)x(\d+)$") re_hypernet_hash = re.compile("\(([0-9a-f]+)\)$") type_of_gr_update = type(gr.update()) + paste_fields = {} -bind_list = [] +registered_param_bindings = [] + + +class ParamBinding: + def __init__(self, paste_button, tabname, source_text_component=None, source_image_component=None, source_tabname=None, override_settings_component=None): + self.paste_button = paste_button + self.tabname = tabname + self.source_text_component = source_text_component + self.source_image_component = source_image_component + self.source_tabname = source_tabname + self.override_settings_component = override_settings_component def reset(): paste_fields.clear() - bind_list.clear() def quote(text): @@ -74,26 +85,6 @@ def add_paste_fields(tabname, init_img, fields): modules.ui.img2img_paste_fields = fields -def integrate_settings_paste_fields(component_dict): - from modules import ui - - settings_map = { - 'CLIP_stop_at_last_layers': 'Clip skip', - 'inpainting_mask_weight': 'Conditional mask weight', - 'sd_model_checkpoint': 'Model hash', - 'eta_noise_seed_delta': 'ENSD', - 'initial_noise_multiplier': 'Noise multiplier', - } - settings_paste_fields = [ - (component_dict[k], lambda d, k=k, v=v: ui.apply_setting(k, d.get(v, None))) - for k, v in settings_map.items() - ] - - for tabname, info in paste_fields.items(): - if info["fields"] is not None: - info["fields"] += settings_paste_fields - - def create_buttons(tabs_list): buttons = {} for tab in tabs_list: @@ -101,9 +92,60 @@ def create_buttons(tabs_list): return buttons -#if send_generate_info is a tab name, mean generate_info comes from the params fields of the tab def bind_buttons(buttons, send_image, send_generate_info): - bind_list.append([buttons, send_image, send_generate_info]) + """old function for backwards compatibility; do not use this, use register_paste_params_button""" + for tabname, button in buttons.items(): + source_text_component = send_generate_info if isinstance(send_generate_info, gr.components.Component) else None + source_tabname = send_generate_info if isinstance(send_generate_info, str) else None + + register_paste_params_button(ParamBinding(paste_button=button, tabname=tabname, source_text_component=source_text_component, source_image_component=send_image, source_tabname=source_tabname)) + + +def register_paste_params_button(binding: ParamBinding): + registered_param_bindings.append(binding) + + +def connect_paste_params_buttons(): + binding: ParamBinding + for binding in registered_param_bindings: + destination_image_component = paste_fields[binding.tabname]["init_img"] + fields = paste_fields[binding.tabname]["fields"] + + destination_width_component = next(iter([field for field, name in fields if name == "Size-1"] if fields else []), None) + destination_height_component = next(iter([field for field, name in fields if name == "Size-2"] if fields else []), None) + + if binding.source_image_component and destination_image_component: + if isinstance(binding.source_image_component, gr.Gallery): + func = send_image_and_dimensions if destination_width_component else image_from_url_text + jsfunc = "extract_image_from_gallery" + else: + func = send_image_and_dimensions if destination_width_component else lambda x: x + jsfunc = None + + binding.paste_button.click( + fn=func, + _js=jsfunc, + inputs=[binding.source_image_component], + outputs=[destination_image_component, destination_width_component, destination_height_component] if destination_width_component else [destination_image_component], + ) + + if binding.source_text_component is not None and fields is not None: + connect_paste(binding.paste_button, fields, binding.source_text_component, binding.override_settings_component) + + if binding.source_tabname is not None and fields is not None: + paste_field_names = ['Prompt', 'Negative prompt', 'Steps', 'Face restoration'] + (["Seed"] if shared.opts.send_seed else []) + binding.paste_button.click( + fn=lambda *x: x, + inputs=[field for field, name in paste_fields[binding.source_tabname]["fields"] if name in paste_field_names], + outputs=[field for field, name in fields if name in paste_field_names], + ) + + binding.paste_button.click( + fn=None, + _js=f"switch_to_{binding.tabname}", + inputs=None, + outputs=None, + ) def send_image_and_dimensions(x): @@ -122,49 +164,6 @@ def send_image_and_dimensions(x): return img, w, h -def run_bind(): - for buttons, source_image_component, send_generate_info in bind_list: - for tab in buttons: - button = buttons[tab] - destination_image_component = paste_fields[tab]["init_img"] - fields = paste_fields[tab]["fields"] - - destination_width_component = next(iter([field for field, name in fields if name == "Size-1"] if fields else []), None) - destination_height_component = next(iter([field for field, name in fields if name == "Size-2"] if fields else []), None) - - if source_image_component and destination_image_component: - if isinstance(source_image_component, gr.Gallery): - func = send_image_and_dimensions if destination_width_component else image_from_url_text - jsfunc = "extract_image_from_gallery" - else: - func = send_image_and_dimensions if destination_width_component else lambda x: x - jsfunc = None - - button.click( - fn=func, - _js=jsfunc, - inputs=[source_image_component], - outputs=[destination_image_component, destination_width_component, destination_height_component] if destination_width_component else [destination_image_component], - ) - - if send_generate_info and fields is not None: - if send_generate_info in paste_fields: - paste_field_names = ['Prompt', 'Negative prompt', 'Steps', 'Face restoration'] + (["Seed"] if shared.opts.send_seed else []) - button.click( - fn=lambda *x: x, - inputs=[field for field, name in paste_fields[send_generate_info]["fields"] if name in paste_field_names], - outputs=[field for field, name in fields if name in paste_field_names], - ) - else: - connect_paste(button, fields, send_generate_info) - - button.click( - fn=None, - _js=f"switch_to_{tab}", - inputs=None, - outputs=None, - ) - def find_hypernetwork_key(hypernet_name, hypernet_hash=None): """Determines the config parameter name to use for the hypernet based on the parameters in the infotext. @@ -286,7 +285,47 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model return res -def connect_paste(button, paste_fields, input_comp, jsfunc=None): +settings_map = {} + +infotext_to_setting_name_mapping = [ + ('Clip skip', 'CLIP_stop_at_last_layers', ), + ('Conditional mask weight', 'inpainting_mask_weight'), + ('Model hash', 'sd_model_checkpoint'), + ('ENSD', 'eta_noise_seed_delta'), + ('Noise multiplier', 'initial_noise_multiplier'), +] + + +def create_override_settings_dict(text_pairs): + """creates processing's override_settings parameters from gradio's multiselect + + Example input: + ['Clip skip: 2', 'Model hash: e6e99610c4', 'ENSD: 31337'] + + Example output: + {'CLIP_stop_at_last_layers': 2, 'sd_model_checkpoint': 'e6e99610c4', 'eta_noise_seed_delta': 31337} + """ + + res = {} + + params = {} + for pair in text_pairs: + k, v = pair.split(":", maxsplit=1) + + params[k] = v.strip() + + for param_name, setting_name in infotext_to_setting_name_mapping: + value = params.get(param_name, None) + + if value is None: + continue + + res[setting_name] = shared.opts.cast_value(setting_name, value) + + return res + + +def connect_paste(button, paste_fields, input_comp, override_settings_component, jsfunc=None): def paste_func(prompt): if not prompt and not shared.cmd_opts.hide_ui_dir_config: filename = os.path.join(data_path, "params.txt") @@ -323,6 +362,32 @@ def connect_paste(button, paste_fields, input_comp, jsfunc=None): return res + if override_settings_component is not None: + def paste_settings(params): + vals = {} + + for param_name, setting_name in infotext_to_setting_name_mapping: + v = params.get(param_name, None) + if v is None: + continue + + if setting_name == "sd_model_checkpoint" and shared.opts.disable_weights_auto_swap: + continue + + v = shared.opts.cast_value(setting_name, v) + current_value = getattr(shared.opts, setting_name, None) + + if v == current_value: + continue + + vals[param_name] = v + + vals_pairs = [f"{k}: {v}" for k, v in vals.items()] + + return gr.Dropdown.update(value=vals_pairs, choices=vals_pairs, visible=len(vals_pairs) > 0) + + paste_fields = paste_fields + [(override_settings_component, paste_settings)] + button.click( fn=paste_func, _js=jsfunc, diff --git a/modules/shared.py b/modules/shared.py index eb04e811..b5370265 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -127,12 +127,13 @@ restricted_opts = { ui_reorder_categories = [ "inpaint", "sampler", + "checkboxes", + "hires_fix", "dimensions", "cfg", "seed", - "checkboxes", - "hires_fix", "batch", + "override_settings", "scripts", ] @@ -346,10 +347,10 @@ options_templates.update(options_section(('saving-paths', "Paths for saving"), { })) options_templates.update(options_section(('saving-to-dirs', "Saving to a directory"), { - "save_to_dirs": OptionInfo(False, "Save images to a subdirectory"), - "grid_save_to_dirs": OptionInfo(False, "Save grids to a subdirectory"), + "save_to_dirs": OptionInfo(True, "Save images to a subdirectory"), + "grid_save_to_dirs": OptionInfo(True, "Save grids to a subdirectory"), "use_save_to_dirs_for_ui": OptionInfo(False, "When using \"Save\" button, save images to a subdirectory"), - "directories_filename_pattern": OptionInfo("", "Directory name pattern", component_args=hide_dirs), + "directories_filename_pattern": OptionInfo("[date]", "Directory name pattern", component_args=hide_dirs), "directories_max_prompt_words": OptionInfo(8, "Max prompt words for [prompt_words] pattern", gr.Slider, {"minimum": 1, "maximum": 20, "step": 1, **hide_dirs}), })) @@ -605,11 +606,37 @@ class Options: self.data_labels = {k: v for k, v in sorted(settings_items, key=lambda x: section_ids[x[1].section])} + def cast_value(self, key, value): + """casts an arbitrary to the same type as this setting's value with key + Example: cast_value("eta_noise_seed_delta", "12") -> returns 12 (an int rather than str) + """ + + if value is None: + return None + + default_value = self.data_labels[key].default + if default_value is None: + default_value = getattr(self, key, None) + if default_value is None: + return None + + expected_type = type(default_value) + if expected_type == bool and value == "False": + value = False + else: + value = expected_type(value) + + return value + + opts = Options() if os.path.exists(config_filename): opts.load(config_filename) +settings_components = None +"""assinged from ui.py, a mapping on setting anmes to gradio components repsponsible for those settings""" + latent_upscale_default_mode = "Latent" latent_upscale_modes = { "Latent": {"mode": "bilinear", "antialias": False}, diff --git a/modules/txt2img.py b/modules/txt2img.py index e945fd69..16841d0f 100644 --- a/modules/txt2img.py +++ b/modules/txt2img.py @@ -1,5 +1,6 @@ import modules.scripts from modules import sd_samplers +from modules.generation_parameters_copypaste import create_override_settings_dict from modules.processing import StableDiffusionProcessing, Processed, StableDiffusionProcessingTxt2Img, \ StableDiffusionProcessingImg2Img, process_images from modules.shared import opts, cmd_opts @@ -8,7 +9,9 @@ import modules.processing as processing from modules.ui import plaintext_to_html -def txt2img(id_task: str, prompt: str, negative_prompt: str, prompt_styles, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, hr_scale: float, hr_upscaler: str, hr_second_pass_steps: int, hr_resize_x: int, hr_resize_y: int, *args): +def txt2img(id_task: str, prompt: str, negative_prompt: str, prompt_styles, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, hr_scale: float, hr_upscaler: str, hr_second_pass_steps: int, hr_resize_x: int, hr_resize_y: int, override_settings_texts, *args): + override_settings = create_override_settings_dict(override_settings_texts) + p = StableDiffusionProcessingTxt2Img( sd_model=shared.sd_model, outpath_samples=opts.outdir_samples or opts.outdir_txt2img_samples, @@ -38,6 +41,7 @@ def txt2img(id_task: str, prompt: str, negative_prompt: str, prompt_styles, step hr_second_pass_steps=hr_second_pass_steps, hr_resize_x=hr_resize_x, hr_resize_y=hr_resize_y, + override_settings=override_settings, ) p.scripts = modules.scripts.scripts_txt2img diff --git a/modules/ui.py b/modules/ui.py index f1195692..a7fcdd83 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -380,6 +380,7 @@ def apply_setting(key, value): opts.save(shared.config_filename) return getattr(opts, key) + def create_refresh_button(refresh_component, refresh_method, refreshed_args, elem_id): def refresh(): refresh_method() @@ -433,6 +434,18 @@ def get_value_for_setting(key): return gr.update(value=value, **args) +def create_override_settings_dropdown(tabname, row): + dropdown = gr.Dropdown([], label="Override settings", visible=False, elem_id=f"{tabname}_override_settings", multiselect=True) + + dropdown.change( + fn=lambda x: gr.Dropdown.update(visible=len(x) > 0), + inputs=[dropdown], + outputs=[dropdown], + ) + + return dropdown + + def create_ui(): import modules.img2img import modules.txt2img @@ -503,6 +516,10 @@ def create_ui(): batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1, elem_id="txt2img_batch_count") batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1, elem_id="txt2img_batch_size") + elif category == "override_settings": + with FormRow(elem_id="txt2img_override_settings_row") as row: + override_settings = create_override_settings_dropdown('txt2img', row) + elif category == "scripts": with FormGroup(elem_id="txt2img_script_container"): custom_inputs = modules.scripts.scripts_txt2img.setup_ui() @@ -524,7 +541,6 @@ def create_ui(): ) txt2img_gallery, generation_info, html_info, html_log = create_output_panel("txt2img", opts.outdir_txt2img_samples) - parameters_copypaste.bind_buttons({"txt2img": txt2img_paste}, None, txt2img_prompt) connect_reuse_seed(seed, reuse_seed, generation_info, dummy_component, is_subseed=False) connect_reuse_seed(subseed, reuse_subseed, generation_info, dummy_component, is_subseed=True) @@ -555,6 +571,7 @@ def create_ui(): hr_second_pass_steps, hr_resize_x, hr_resize_y, + override_settings, ] + custom_inputs, outputs=[ @@ -615,6 +632,9 @@ def create_ui(): *modules.scripts.scripts_txt2img.infotext_fields ] parameters_copypaste.add_paste_fields("txt2img", None, txt2img_paste_fields) + parameters_copypaste.register_paste_params_button(parameters_copypaste.ParamBinding( + paste_button=txt2img_paste, tabname="txt2img", source_text_component=txt2img_prompt, source_image_component=None, override_settings_component=override_settings, + )) txt2img_preview_params = [ txt2img_prompt, @@ -762,6 +782,10 @@ def create_ui(): batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1, elem_id="img2img_batch_count") batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1, elem_id="img2img_batch_size") + elif category == "override_settings": + with FormRow(elem_id="img2img_override_settings_row") as row: + override_settings = create_override_settings_dropdown('img2img', row) + elif category == "scripts": with FormGroup(elem_id="img2img_script_container"): custom_inputs = modules.scripts.scripts_img2img.setup_ui() @@ -796,7 +820,6 @@ def create_ui(): ) img2img_gallery, generation_info, html_info, html_log = create_output_panel("img2img", opts.outdir_img2img_samples) - parameters_copypaste.bind_buttons({"img2img": img2img_paste}, None, img2img_prompt) connect_reuse_seed(seed, reuse_seed, generation_info, dummy_component, is_subseed=False) connect_reuse_seed(subseed, reuse_subseed, generation_info, dummy_component, is_subseed=True) @@ -937,6 +960,9 @@ def create_ui(): ] parameters_copypaste.add_paste_fields("img2img", init_img, img2img_paste_fields) parameters_copypaste.add_paste_fields("inpaint", init_img_with_mask, img2img_paste_fields) + parameters_copypaste.register_paste_params_button(parameters_copypaste.ParamBinding( + paste_button=img2img_paste, tabname="img2img", source_text_component=img2img_prompt, source_image_component=None, + )) modules.scripts.scripts_current = None @@ -954,7 +980,11 @@ def create_ui(): html2 = gr.HTML() with gr.Row(): buttons = parameters_copypaste.create_buttons(["txt2img", "img2img", "inpaint", "extras"]) - parameters_copypaste.bind_buttons(buttons, image, generation_info) + + for tabname, button in buttons.items(): + parameters_copypaste.register_paste_params_button(parameters_copypaste.ParamBinding( + paste_button=button, tabname=tabname, source_text_component=generation_info, source_image_component=image, + )) image.change( fn=wrap_gradio_call(modules.extras.run_pnginfo), @@ -1363,6 +1393,7 @@ def create_ui(): components = [] component_dict = {} + shared.settings_components = component_dict script_callbacks.ui_settings_callback() opts.reorder() @@ -1529,8 +1560,7 @@ def create_ui(): component = create_setting_component(k, is_quicksettings=True) component_dict[k] = component - parameters_copypaste.integrate_settings_paste_fields(component_dict) - parameters_copypaste.run_bind() + parameters_copypaste.connect_paste_params_buttons() with gr.Tabs(elem_id="tabs") as tabs: for interface, label, ifid in interfaces: diff --git a/modules/ui_common.py b/modules/ui_common.py index 9405ac1f..fd047f31 100644 --- a/modules/ui_common.py +++ b/modules/ui_common.py @@ -198,5 +198,9 @@ Requested path was: {f} html_info = gr.HTML(elem_id=f'html_info_{tabname}') html_log = gr.HTML(elem_id=f'html_log_{tabname}') - parameters_copypaste.bind_buttons(buttons, result_gallery, "txt2img" if tabname == "txt2img" else None) + for paste_tabname, paste_button in buttons.items(): + parameters_copypaste.register_paste_params_button(parameters_copypaste.ParamBinding( + paste_button=paste_button, tabname=paste_tabname, source_tabname="txt2img" if tabname == "txt2img" else None, source_image_component=result_gallery + )) + return result_gallery, generation_info if tabname != "extras" else html_info_x, html_info, html_log From f91068f426a359942d13bf7ec15b56562141b8d7 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Mon, 30 Jan 2023 00:37:26 +0300 Subject: [PATCH 08/54] change disable_weights_auto_swap to true by default --- modules/shared.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/modules/shared.py b/modules/shared.py index b5370265..96a2572f 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -441,7 +441,7 @@ options_templates.update(options_section(('ui', "User interface"), { "do_not_show_images": OptionInfo(False, "Do not show any images in results for web"), "add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"), "add_model_name_to_info": OptionInfo(True, "Add model name to generation information"), - "disable_weights_auto_swap": OptionInfo(False, "When reading generation parameters from text into UI (from PNG info or pasted text), do not change the selected model/checkpoint."), + "disable_weights_auto_swap": OptionInfo(True, "When reading generation parameters from text into UI (from PNG info or pasted text), do not change the selected model/checkpoint."), "send_seed": OptionInfo(True, "Send seed when sending prompt or image to other interface"), "send_size": OptionInfo(True, "Send size when sending prompt or image to another interface"), "font": OptionInfo("", "Font for image grids that have text"), From 399720dac2543fb4cdbe1022ec1a01f2411b81e2 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Mon, 30 Jan 2023 01:03:31 +0300 Subject: [PATCH 09/54] update prompt token counts after using the paste params button --- javascript/ui.js | 36 +++++++++++++++++----- modules/generation_parameters_copypaste.py | 6 ++-- 2 files changed, 31 insertions(+), 11 deletions(-) diff --git a/javascript/ui.js b/javascript/ui.js index dd40e62d..b7a8268a 100644 --- a/javascript/ui.js +++ b/javascript/ui.js @@ -191,6 +191,28 @@ function confirm_clear_prompt(prompt, negative_prompt) { return [prompt, negative_prompt] } + +promptTokecountUpdateFuncs = {} + +function recalculatePromptTokens(name){ + if(promptTokecountUpdateFuncs[name]){ + promptTokecountUpdateFuncs[name]() + } +} + +function recalculate_prompts_txt2img(){ + recalculatePromptTokens('txt2img_prompt') + recalculatePromptTokens('txt2img_neg_prompt') + return args_to_array(arguments); +} + +function recalculate_prompts_img2img(){ + recalculatePromptTokens('img2img_prompt') + recalculatePromptTokens('img2img_neg_prompt') + return args_to_array(arguments); +} + + opts = {} onUiUpdate(function(){ if(Object.keys(opts).length != 0) return; @@ -232,14 +254,12 @@ onUiUpdate(function(){ return } - prompt.parentElement.insertBefore(counter, prompt) counter.classList.add("token-counter") prompt.parentElement.style.position = "relative" - textarea.addEventListener("input", function(){ - update_token_counter(id_button); - }); + promptTokecountUpdateFuncs[id] = function(){ update_token_counter(id_button); } + textarea.addEventListener("input", promptTokecountUpdateFuncs[id]); } registerTextarea('txt2img_prompt', 'txt2img_token_counter', 'txt2img_token_button') @@ -273,7 +293,7 @@ onOptionsChanged(function(){ let txt2img_textarea, img2img_textarea = undefined; let wait_time = 800 -let token_timeout; +let token_timeouts = {}; function update_txt2img_tokens(...args) { update_token_counter("txt2img_token_button") @@ -290,9 +310,9 @@ function update_img2img_tokens(...args) { } function update_token_counter(button_id) { - if (token_timeout) - clearTimeout(token_timeout); - token_timeout = setTimeout(() => gradioApp().getElementById(button_id)?.click(), wait_time); + if (token_timeouts[button_id]) + clearTimeout(token_timeouts[button_id]); + token_timeouts[button_id] = setTimeout(() => gradioApp().getElementById(button_id)?.click(), wait_time); } function restart_reload(){ diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py index 1292fead..2a10524f 100644 --- a/modules/generation_parameters_copypaste.py +++ b/modules/generation_parameters_copypaste.py @@ -130,7 +130,7 @@ def connect_paste_params_buttons(): ) if binding.source_text_component is not None and fields is not None: - connect_paste(binding.paste_button, fields, binding.source_text_component, binding.override_settings_component) + connect_paste(binding.paste_button, fields, binding.source_text_component, binding.override_settings_component, binding.tabname) if binding.source_tabname is not None and fields is not None: paste_field_names = ['Prompt', 'Negative prompt', 'Steps', 'Face restoration'] + (["Seed"] if shared.opts.send_seed else []) @@ -325,7 +325,7 @@ def create_override_settings_dict(text_pairs): return res -def connect_paste(button, paste_fields, input_comp, override_settings_component, jsfunc=None): +def connect_paste(button, paste_fields, input_comp, override_settings_component, tabname): def paste_func(prompt): if not prompt and not shared.cmd_opts.hide_ui_dir_config: filename = os.path.join(data_path, "params.txt") @@ -390,7 +390,7 @@ def connect_paste(button, paste_fields, input_comp, override_settings_component, button.click( fn=paste_func, - _js=jsfunc, + _js=f"recalculate_prompts_{tabname}", inputs=[input_comp], outputs=[x[0] for x in paste_fields], ) From 847ceae1f71ee13e0a397da048d1bb418e8f36c1 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Mon, 30 Jan 2023 01:41:23 +0300 Subject: [PATCH 10/54] make it possible to search checkpoint by its hash --- modules/ui_extra_networks_checkpoints.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/modules/ui_extra_networks_checkpoints.py b/modules/ui_extra_networks_checkpoints.py index a6799171..04097a79 100644 --- a/modules/ui_extra_networks_checkpoints.py +++ b/modules/ui_extra_networks_checkpoints.py @@ -14,6 +14,7 @@ class ExtraNetworksPageCheckpoints(ui_extra_networks.ExtraNetworksPage): shared.refresh_checkpoints() def list_items(self): + checkpoint: sd_models.CheckpointInfo for name, checkpoint in sd_models.checkpoints_list.items(): path, ext = os.path.splitext(checkpoint.filename) previews = [path + ".png", path + ".preview.png"] @@ -28,7 +29,7 @@ class ExtraNetworksPageCheckpoints(ui_extra_networks.ExtraNetworksPage): "name": checkpoint.name_for_extra, "filename": path, "preview": preview, - "search_term": self.search_terms_from_path(checkpoint.filename), + "search_term": self.search_terms_from_path(checkpoint.filename) + " " + (checkpoint.sha256 or ""), "onclick": '"' + html.escape(f"""return selectCheckpoint({json.dumps(name)})""") + '"', "local_preview": path + ".png", } From c81b52ffbd6252842b3473a7aa8eb7ffc88ee7d1 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Mon, 30 Jan 2023 02:40:26 +0300 Subject: [PATCH 11/54] add override settings component to img2img --- modules/img2img.py | 6 +++++- modules/ui.py | 5 +++-- 2 files changed, 8 insertions(+), 3 deletions(-) diff --git a/modules/img2img.py b/modules/img2img.py index 3ecb6146..f813299c 100644 --- a/modules/img2img.py +++ b/modules/img2img.py @@ -7,6 +7,7 @@ import numpy as np from PIL import Image, ImageOps, ImageFilter, ImageEnhance, ImageChops from modules import devices, sd_samplers +from modules.generation_parameters_copypaste import create_override_settings_dict from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images from modules.shared import opts, state import modules.shared as shared @@ -75,7 +76,9 @@ def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args): processed_image.save(os.path.join(output_dir, filename)) -def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, steps: int, sampler_index: int, mask_blur: int, mask_alpha: float, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, *args): +def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, steps: int, sampler_index: int, mask_blur: int, mask_alpha: float, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, *args): + override_settings = create_override_settings_dict(override_settings_texts) + is_batch = mode == 5 if mode == 0: # img2img @@ -142,6 +145,7 @@ def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_s inpaint_full_res=inpaint_full_res, inpaint_full_res_padding=inpaint_full_res_padding, inpainting_mask_invert=inpainting_mask_invert, + override_settings=override_settings, ) p.scripts = modules.scripts.scripts_txt2img diff --git a/modules/ui.py b/modules/ui.py index a7fcdd83..f910c582 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -872,7 +872,8 @@ def create_ui(): inpainting_mask_invert, img2img_batch_input_dir, img2img_batch_output_dir, - img2img_batch_inpaint_mask_dir + img2img_batch_inpaint_mask_dir, + override_settings, ] + custom_inputs, outputs=[ img2img_gallery, @@ -961,7 +962,7 @@ def create_ui(): parameters_copypaste.add_paste_fields("img2img", init_img, img2img_paste_fields) parameters_copypaste.add_paste_fields("inpaint", init_img_with_mask, img2img_paste_fields) parameters_copypaste.register_paste_params_button(parameters_copypaste.ParamBinding( - paste_button=img2img_paste, tabname="img2img", source_text_component=img2img_prompt, source_image_component=None, + paste_button=img2img_paste, tabname="img2img", source_text_component=img2img_prompt, source_image_component=None, override_settings_component=override_settings, )) modules.scripts.scripts_current = None From cbd6329488beafe036ea3a3d0cea1a6940105cf9 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Mon, 30 Jan 2023 09:12:43 +0300 Subject: [PATCH 12/54] add an environment variable for selecting xformers package --- launch.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/launch.py b/launch.py index 370920de..25909469 100644 --- a/launch.py +++ b/launch.py @@ -223,6 +223,7 @@ def prepare_environment(): requirements_file = os.environ.get('REQS_FILE', "requirements_versions.txt") commandline_args = os.environ.get('COMMANDLINE_ARGS', "") + xformers_package = os.environ.get('XFORMERS_PACKAGE', 'xformers==0.0.16rc425') gfpgan_package = os.environ.get('GFPGAN_PACKAGE', "git+https://github.com/TencentARC/GFPGAN.git@8d2447a2d918f8eba5a4a01463fd48e45126a379") clip_package = os.environ.get('CLIP_PACKAGE', "git+https://github.com/openai/CLIP.git@d50d76daa670286dd6cacf3bcd80b5e4823fc8e1") openclip_package = os.environ.get('OPENCLIP_PACKAGE', "git+https://github.com/mlfoundations/open_clip.git@bb6e834e9c70d9c27d0dc3ecedeebeaeb1ffad6b") @@ -282,7 +283,7 @@ def prepare_environment(): if (not is_installed("xformers") or reinstall_xformers) and xformers: if platform.system() == "Windows": if platform.python_version().startswith("3.10"): - run_pip(f"install -U -I --no-deps xformers==0.0.16rc425", "xformers") + run_pip(f"install -U -I --no-deps {xformers_package}", "xformers") else: print("Installation of xformers is not supported in this version of Python.") print("You can also check this and build manually: https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers#building-xformers-on-windows-by-duckness") From 0c7c36a6c6f12da55e04bd79ae068daac8b586a1 Mon Sep 17 00:00:00 2001 From: Andrey <16777216c@gmail.com> Date: Mon, 30 Jan 2023 09:35:52 +0300 Subject: [PATCH 13/54] Split history sd_samplers.py to sd_samplers_compvis.py --- modules/{sd_samplers.py => sd_samplers_compvis.py} | 0 1 file changed, 0 insertions(+), 0 deletions(-) rename modules/{sd_samplers.py => sd_samplers_compvis.py} (100%) diff --git a/modules/sd_samplers.py b/modules/sd_samplers_compvis.py similarity index 100% rename from modules/sd_samplers.py rename to modules/sd_samplers_compvis.py From 9118b086068253c8f25c6277c385606b79c5b036 Mon Sep 17 00:00:00 2001 From: Andrey <16777216c@gmail.com> Date: Mon, 30 Jan 2023 09:35:52 +0300 Subject: [PATCH 14/54] Split history sd_samplers.py to sd_samplers_compvis.py --- modules/{sd_samplers.py => temp} | 0 1 file changed, 0 insertions(+), 0 deletions(-) rename modules/{sd_samplers.py => temp} (100%) diff --git a/modules/sd_samplers.py b/modules/temp similarity index 100% rename from modules/sd_samplers.py rename to modules/temp From 449531a6c59b030b1cd7c3cba1113c47e0fc1c7d Mon Sep 17 00:00:00 2001 From: Andrey <16777216c@gmail.com> Date: Mon, 30 Jan 2023 09:35:53 +0300 Subject: [PATCH 15/54] Split history sd_samplers.py to sd_samplers_compvis.py --- modules/{temp => sd_samplers.py} | 0 1 file changed, 0 insertions(+), 0 deletions(-) rename modules/{temp => sd_samplers.py} (100%) diff --git a/modules/temp b/modules/sd_samplers.py similarity index 100% rename from modules/temp rename to modules/sd_samplers.py From 5feae71dd218a3505f14505d71c6b335f9c642ac Mon Sep 17 00:00:00 2001 From: Andrey <16777216c@gmail.com> Date: Mon, 30 Jan 2023 09:37:50 +0300 Subject: [PATCH 16/54] Split history sd_samplers.py to sd_samplers_common.py --- modules/{sd_samplers.py => sd_samplers_common.py} | 0 1 file changed, 0 insertions(+), 0 deletions(-) rename modules/{sd_samplers.py => sd_samplers_common.py} (100%) diff --git a/modules/sd_samplers.py b/modules/sd_samplers_common.py similarity index 100% rename from modules/sd_samplers.py rename to modules/sd_samplers_common.py From 6e78f6a8961875df11551650b4c5c8bddb6ed9ce Mon Sep 17 00:00:00 2001 From: Andrey <16777216c@gmail.com> Date: Mon, 30 Jan 2023 09:37:50 +0300 Subject: [PATCH 17/54] Split history sd_samplers.py to sd_samplers_common.py --- modules/{sd_samplers.py => temp} | 0 1 file changed, 0 insertions(+), 0 deletions(-) rename modules/{sd_samplers.py => temp} (100%) diff --git a/modules/sd_samplers.py b/modules/temp similarity index 100% rename from modules/sd_samplers.py rename to modules/temp From f8fcad502ec97ceb7ca4bf52f0f2efc8b80c0b64 Mon Sep 17 00:00:00 2001 From: Andrey <16777216c@gmail.com> Date: Mon, 30 Jan 2023 09:37:51 +0300 Subject: [PATCH 18/54] Split history sd_samplers.py to sd_samplers_common.py --- modules/{temp => sd_samplers.py} | 0 1 file changed, 0 insertions(+), 0 deletions(-) rename modules/{temp => sd_samplers.py} (100%) diff --git a/modules/temp b/modules/sd_samplers.py similarity index 100% rename from modules/temp rename to modules/sd_samplers.py From aa54a9d41680051b4b28b0655f8d61a2f23600b1 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Mon, 30 Jan 2023 09:51:06 +0300 Subject: [PATCH 19/54] split compvis sampler and shared sampler stuff into their own files --- modules/sd_samplers.py | 243 ++--------------- modules/sd_samplers_common.py | 479 +-------------------------------- modules/sd_samplers_compvis.py | 423 +---------------------------- 3 files changed, 28 insertions(+), 1117 deletions(-) diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py index a7910b56..9a29f1ae 100644 --- a/modules/sd_samplers.py +++ b/modules/sd_samplers.py @@ -1,22 +1,18 @@ -from collections import namedtuple, deque -import numpy as np -from math import floor +from collections import deque import torch -import tqdm -from PIL import Image import inspect import k_diffusion.sampling -import torchsde._brownian.brownian_interval import ldm.models.diffusion.ddim import ldm.models.diffusion.plms -from modules import prompt_parser, devices, processing, images, sd_vae_approx +from modules import prompt_parser, devices, sd_samplers_common, sd_samplers_compvis -from modules.shared import opts, cmd_opts, state +from modules.shared import opts, state import modules.shared as shared from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback +# imports for functions that previously were here and are used by other modules +from modules.sd_samplers_common import samples_to_image_grid, sample_to_image -SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options']) samplers_k_diffusion = [ ('Euler a', 'sample_euler_ancestral', ['k_euler_a', 'k_euler_ancestral'], {}), @@ -39,15 +35,15 @@ samplers_k_diffusion = [ ] samplers_data_k_diffusion = [ - SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options) + sd_samplers_common.SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options) for label, funcname, aliases, options in samplers_k_diffusion if hasattr(k_diffusion.sampling, funcname) ] all_samplers = [ *samplers_data_k_diffusion, - SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {}), - SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {}), + sd_samplers_common.SamplerData('DDIM', lambda model: sd_samplers_compvis.VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {}), + sd_samplers_common.SamplerData('PLMS', lambda model: sd_samplers_compvis.VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {}), ] all_samplers_map = {x.name: x for x in all_samplers} @@ -95,202 +91,6 @@ sampler_extra_params = { } -def setup_img2img_steps(p, steps=None): - if opts.img2img_fix_steps or steps is not None: - requested_steps = (steps or p.steps) - steps = int(requested_steps / min(p.denoising_strength, 0.999)) if p.denoising_strength > 0 else 0 - t_enc = requested_steps - 1 - else: - steps = p.steps - t_enc = int(min(p.denoising_strength, 0.999) * steps) - - return steps, t_enc - - -approximation_indexes = {"Full": 0, "Approx NN": 1, "Approx cheap": 2} - - -def single_sample_to_image(sample, approximation=None): - if approximation is None: - approximation = approximation_indexes.get(opts.show_progress_type, 0) - - if approximation == 2: - x_sample = sd_vae_approx.cheap_approximation(sample) - elif approximation == 1: - x_sample = sd_vae_approx.model()(sample.to(devices.device, devices.dtype).unsqueeze(0))[0].detach() - else: - x_sample = processing.decode_first_stage(shared.sd_model, sample.unsqueeze(0))[0] - - x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0) - x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2) - x_sample = x_sample.astype(np.uint8) - return Image.fromarray(x_sample) - - -def sample_to_image(samples, index=0, approximation=None): - return single_sample_to_image(samples[index], approximation) - - -def samples_to_image_grid(samples, approximation=None): - return images.image_grid([single_sample_to_image(sample, approximation) for sample in samples]) - - -def store_latent(decoded): - state.current_latent = decoded - - if opts.live_previews_enable and opts.show_progress_every_n_steps > 0 and shared.state.sampling_step % opts.show_progress_every_n_steps == 0: - if not shared.parallel_processing_allowed: - shared.state.assign_current_image(sample_to_image(decoded)) - - -class InterruptedException(BaseException): - pass - - -class VanillaStableDiffusionSampler: - def __init__(self, constructor, sd_model): - self.sampler = constructor(sd_model) - self.is_plms = hasattr(self.sampler, 'p_sample_plms') - self.orig_p_sample_ddim = self.sampler.p_sample_plms if self.is_plms else self.sampler.p_sample_ddim - self.mask = None - self.nmask = None - self.init_latent = None - self.sampler_noises = None - self.step = 0 - self.stop_at = None - self.eta = None - self.default_eta = 0.0 - self.config = None - self.last_latent = None - - self.conditioning_key = sd_model.model.conditioning_key - - def number_of_needed_noises(self, p): - return 0 - - def launch_sampling(self, steps, func): - state.sampling_steps = steps - state.sampling_step = 0 - - try: - return func() - except InterruptedException: - return self.last_latent - - def p_sample_ddim_hook(self, x_dec, cond, ts, unconditional_conditioning, *args, **kwargs): - if state.interrupted or state.skipped: - raise InterruptedException - - if self.stop_at is not None and self.step > self.stop_at: - raise InterruptedException - - # Have to unwrap the inpainting conditioning here to perform pre-processing - image_conditioning = None - if isinstance(cond, dict): - image_conditioning = cond["c_concat"][0] - cond = cond["c_crossattn"][0] - unconditional_conditioning = unconditional_conditioning["c_crossattn"][0] - - conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step) - unconditional_conditioning = prompt_parser.reconstruct_cond_batch(unconditional_conditioning, self.step) - - assert all([len(conds) == 1 for conds in conds_list]), 'composition via AND is not supported for DDIM/PLMS samplers' - cond = tensor - - # for DDIM, shapes must match, we can't just process cond and uncond independently; - # filling unconditional_conditioning with repeats of the last vector to match length is - # not 100% correct but should work well enough - if unconditional_conditioning.shape[1] < cond.shape[1]: - last_vector = unconditional_conditioning[:, -1:] - last_vector_repeated = last_vector.repeat([1, cond.shape[1] - unconditional_conditioning.shape[1], 1]) - unconditional_conditioning = torch.hstack([unconditional_conditioning, last_vector_repeated]) - elif unconditional_conditioning.shape[1] > cond.shape[1]: - unconditional_conditioning = unconditional_conditioning[:, :cond.shape[1]] - - if self.mask is not None: - img_orig = self.sampler.model.q_sample(self.init_latent, ts) - x_dec = img_orig * self.mask + self.nmask * x_dec - - # Wrap the image conditioning back up since the DDIM code can accept the dict directly. - # Note that they need to be lists because it just concatenates them later. - if image_conditioning is not None: - cond = {"c_concat": [image_conditioning], "c_crossattn": [cond]} - unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]} - - res = self.orig_p_sample_ddim(x_dec, cond, ts, unconditional_conditioning=unconditional_conditioning, *args, **kwargs) - - if self.mask is not None: - self.last_latent = self.init_latent * self.mask + self.nmask * res[1] - else: - self.last_latent = res[1] - - store_latent(self.last_latent) - - self.step += 1 - state.sampling_step = self.step - shared.total_tqdm.update() - - return res - - def initialize(self, p): - self.eta = p.eta if p.eta is not None else opts.eta_ddim - - for fieldname in ['p_sample_ddim', 'p_sample_plms']: - if hasattr(self.sampler, fieldname): - setattr(self.sampler, fieldname, self.p_sample_ddim_hook) - - self.mask = p.mask if hasattr(p, 'mask') else None - self.nmask = p.nmask if hasattr(p, 'nmask') else None - - def adjust_steps_if_invalid(self, p, num_steps): - if (self.config.name == 'DDIM' and p.ddim_discretize == 'uniform') or (self.config.name == 'PLMS'): - valid_step = 999 / (1000 // num_steps) - if valid_step == floor(valid_step): - return int(valid_step) + 1 - - return num_steps - - def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None): - steps, t_enc = setup_img2img_steps(p, steps) - steps = self.adjust_steps_if_invalid(p, steps) - self.initialize(p) - - self.sampler.make_schedule(ddim_num_steps=steps, ddim_eta=self.eta, ddim_discretize=p.ddim_discretize, verbose=False) - x1 = self.sampler.stochastic_encode(x, torch.tensor([t_enc] * int(x.shape[0])).to(shared.device), noise=noise) - - self.init_latent = x - self.last_latent = x - self.step = 0 - - # Wrap the conditioning models with additional image conditioning for inpainting model - if image_conditioning is not None: - conditioning = {"c_concat": [image_conditioning], "c_crossattn": [conditioning]} - unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]} - - samples = self.launch_sampling(t_enc + 1, lambda: self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning)) - - return samples - - def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None): - self.initialize(p) - - self.init_latent = None - self.last_latent = x - self.step = 0 - - steps = self.adjust_steps_if_invalid(p, steps or p.steps) - - # Wrap the conditioning models with additional image conditioning for inpainting model - # dummy_for_plms is needed because PLMS code checks the first item in the dict to have the right shape - if image_conditioning is not None: - conditioning = {"dummy_for_plms": np.zeros((conditioning.shape[0],)), "c_crossattn": [conditioning], "c_concat": [image_conditioning]} - unconditional_conditioning = {"c_crossattn": [unconditional_conditioning], "c_concat": [image_conditioning]} - - samples_ddim = self.launch_sampling(steps, lambda: self.sampler.sample(S=steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x, eta=self.eta)[0]) - - return samples_ddim - - class CFGDenoiser(torch.nn.Module): def __init__(self, model): super().__init__() @@ -312,7 +112,7 @@ class CFGDenoiser(torch.nn.Module): def forward(self, x, sigma, uncond, cond, cond_scale, image_cond): if state.interrupted or state.skipped: - raise InterruptedException + raise sd_samplers_common.InterruptedException conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step) uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step) @@ -354,9 +154,9 @@ class CFGDenoiser(torch.nn.Module): devices.test_for_nans(x_out, "unet") if opts.live_preview_content == "Prompt": - store_latent(x_out[0:uncond.shape[0]]) + sd_samplers_common.store_latent(x_out[0:uncond.shape[0]]) elif opts.live_preview_content == "Negative prompt": - store_latent(x_out[-uncond.shape[0]:]) + sd_samplers_common.store_latent(x_out[-uncond.shape[0]:]) denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale) @@ -395,19 +195,6 @@ class TorchHijack: return torch.randn_like(x) -# MPS fix for randn in torchsde -def torchsde_randn(size, dtype, device, seed): - if device.type == 'mps': - generator = torch.Generator(devices.cpu).manual_seed(int(seed)) - return torch.randn(size, dtype=dtype, device=devices.cpu, generator=generator).to(device) - else: - generator = torch.Generator(device).manual_seed(int(seed)) - return torch.randn(size, dtype=dtype, device=device, generator=generator) - - -torchsde._brownian.brownian_interval._randn = torchsde_randn - - class KDiffusionSampler: def __init__(self, funcname, sd_model): denoiser = k_diffusion.external.CompVisVDenoiser if sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser @@ -430,11 +217,11 @@ class KDiffusionSampler: step = d['i'] latent = d["denoised"] if opts.live_preview_content == "Combined": - store_latent(latent) + sd_samplers_common.store_latent(latent) self.last_latent = latent if self.stop_at is not None and step > self.stop_at: - raise InterruptedException + raise sd_samplers_common.InterruptedException state.sampling_step = step shared.total_tqdm.update() @@ -445,7 +232,7 @@ class KDiffusionSampler: try: return func() - except InterruptedException: + except sd_samplers_common.InterruptedException: return self.last_latent def number_of_needed_noises(self, p): @@ -492,7 +279,7 @@ class KDiffusionSampler: return sigmas def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None): - steps, t_enc = setup_img2img_steps(p, steps) + steps, t_enc = sd_samplers_common.setup_img2img_steps(p, steps) sigmas = self.get_sigmas(p, steps) diff --git a/modules/sd_samplers_common.py b/modules/sd_samplers_common.py index a7910b56..5b06e341 100644 --- a/modules/sd_samplers_common.py +++ b/modules/sd_samplers_common.py @@ -1,99 +1,15 @@ from collections import namedtuple, deque import numpy as np -from math import floor import torch -import tqdm from PIL import Image -import inspect -import k_diffusion.sampling import torchsde._brownian.brownian_interval -import ldm.models.diffusion.ddim -import ldm.models.diffusion.plms -from modules import prompt_parser, devices, processing, images, sd_vae_approx +from modules import devices, processing, images, sd_vae_approx -from modules.shared import opts, cmd_opts, state +from modules.shared import opts, state import modules.shared as shared -from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback - SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options']) -samplers_k_diffusion = [ - ('Euler a', 'sample_euler_ancestral', ['k_euler_a', 'k_euler_ancestral'], {}), - ('Euler', 'sample_euler', ['k_euler'], {}), - ('LMS', 'sample_lms', ['k_lms'], {}), - ('Heun', 'sample_heun', ['k_heun'], {}), - ('DPM2', 'sample_dpm_2', ['k_dpm_2'], {'discard_next_to_last_sigma': True}), - ('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {'discard_next_to_last_sigma': True}), - ('DPM++ 2S a', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a'], {}), - ('DPM++ 2M', 'sample_dpmpp_2m', ['k_dpmpp_2m'], {}), - ('DPM++ SDE', 'sample_dpmpp_sde', ['k_dpmpp_sde'], {}), - ('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {}), - ('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {}), - ('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}), - ('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True}), - ('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True}), - ('DPM++ 2S a Karras', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a_ka'], {'scheduler': 'karras'}), - ('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}), - ('DPM++ SDE Karras', 'sample_dpmpp_sde', ['k_dpmpp_sde_ka'], {'scheduler': 'karras'}), -] - -samplers_data_k_diffusion = [ - SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options) - for label, funcname, aliases, options in samplers_k_diffusion - if hasattr(k_diffusion.sampling, funcname) -] - -all_samplers = [ - *samplers_data_k_diffusion, - SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {}), - SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {}), -] -all_samplers_map = {x.name: x for x in all_samplers} - -samplers = [] -samplers_for_img2img = [] -samplers_map = {} - - -def create_sampler(name, model): - if name is not None: - config = all_samplers_map.get(name, None) - else: - config = all_samplers[0] - - assert config is not None, f'bad sampler name: {name}' - - sampler = config.constructor(model) - sampler.config = config - - return sampler - - -def set_samplers(): - global samplers, samplers_for_img2img - - hidden = set(opts.hide_samplers) - hidden_img2img = set(opts.hide_samplers + ['PLMS']) - - samplers = [x for x in all_samplers if x.name not in hidden] - samplers_for_img2img = [x for x in all_samplers if x.name not in hidden_img2img] - - samplers_map.clear() - for sampler in all_samplers: - samplers_map[sampler.name.lower()] = sampler.name - for alias in sampler.aliases: - samplers_map[alias.lower()] = sampler.name - - -set_samplers() - -sampler_extra_params = { - 'sample_euler': ['s_churn', 's_tmin', 's_tmax', 's_noise'], - 'sample_heun': ['s_churn', 's_tmin', 's_tmax', 's_noise'], - 'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'], -} - def setup_img2img_steps(p, steps=None): if opts.img2img_fix_steps or steps is not None: @@ -147,254 +63,6 @@ class InterruptedException(BaseException): pass -class VanillaStableDiffusionSampler: - def __init__(self, constructor, sd_model): - self.sampler = constructor(sd_model) - self.is_plms = hasattr(self.sampler, 'p_sample_plms') - self.orig_p_sample_ddim = self.sampler.p_sample_plms if self.is_plms else self.sampler.p_sample_ddim - self.mask = None - self.nmask = None - self.init_latent = None - self.sampler_noises = None - self.step = 0 - self.stop_at = None - self.eta = None - self.default_eta = 0.0 - self.config = None - self.last_latent = None - - self.conditioning_key = sd_model.model.conditioning_key - - def number_of_needed_noises(self, p): - return 0 - - def launch_sampling(self, steps, func): - state.sampling_steps = steps - state.sampling_step = 0 - - try: - return func() - except InterruptedException: - return self.last_latent - - def p_sample_ddim_hook(self, x_dec, cond, ts, unconditional_conditioning, *args, **kwargs): - if state.interrupted or state.skipped: - raise InterruptedException - - if self.stop_at is not None and self.step > self.stop_at: - raise InterruptedException - - # Have to unwrap the inpainting conditioning here to perform pre-processing - image_conditioning = None - if isinstance(cond, dict): - image_conditioning = cond["c_concat"][0] - cond = cond["c_crossattn"][0] - unconditional_conditioning = unconditional_conditioning["c_crossattn"][0] - - conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step) - unconditional_conditioning = prompt_parser.reconstruct_cond_batch(unconditional_conditioning, self.step) - - assert all([len(conds) == 1 for conds in conds_list]), 'composition via AND is not supported for DDIM/PLMS samplers' - cond = tensor - - # for DDIM, shapes must match, we can't just process cond and uncond independently; - # filling unconditional_conditioning with repeats of the last vector to match length is - # not 100% correct but should work well enough - if unconditional_conditioning.shape[1] < cond.shape[1]: - last_vector = unconditional_conditioning[:, -1:] - last_vector_repeated = last_vector.repeat([1, cond.shape[1] - unconditional_conditioning.shape[1], 1]) - unconditional_conditioning = torch.hstack([unconditional_conditioning, last_vector_repeated]) - elif unconditional_conditioning.shape[1] > cond.shape[1]: - unconditional_conditioning = unconditional_conditioning[:, :cond.shape[1]] - - if self.mask is not None: - img_orig = self.sampler.model.q_sample(self.init_latent, ts) - x_dec = img_orig * self.mask + self.nmask * x_dec - - # Wrap the image conditioning back up since the DDIM code can accept the dict directly. - # Note that they need to be lists because it just concatenates them later. - if image_conditioning is not None: - cond = {"c_concat": [image_conditioning], "c_crossattn": [cond]} - unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]} - - res = self.orig_p_sample_ddim(x_dec, cond, ts, unconditional_conditioning=unconditional_conditioning, *args, **kwargs) - - if self.mask is not None: - self.last_latent = self.init_latent * self.mask + self.nmask * res[1] - else: - self.last_latent = res[1] - - store_latent(self.last_latent) - - self.step += 1 - state.sampling_step = self.step - shared.total_tqdm.update() - - return res - - def initialize(self, p): - self.eta = p.eta if p.eta is not None else opts.eta_ddim - - for fieldname in ['p_sample_ddim', 'p_sample_plms']: - if hasattr(self.sampler, fieldname): - setattr(self.sampler, fieldname, self.p_sample_ddim_hook) - - self.mask = p.mask if hasattr(p, 'mask') else None - self.nmask = p.nmask if hasattr(p, 'nmask') else None - - def adjust_steps_if_invalid(self, p, num_steps): - if (self.config.name == 'DDIM' and p.ddim_discretize == 'uniform') or (self.config.name == 'PLMS'): - valid_step = 999 / (1000 // num_steps) - if valid_step == floor(valid_step): - return int(valid_step) + 1 - - return num_steps - - def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None): - steps, t_enc = setup_img2img_steps(p, steps) - steps = self.adjust_steps_if_invalid(p, steps) - self.initialize(p) - - self.sampler.make_schedule(ddim_num_steps=steps, ddim_eta=self.eta, ddim_discretize=p.ddim_discretize, verbose=False) - x1 = self.sampler.stochastic_encode(x, torch.tensor([t_enc] * int(x.shape[0])).to(shared.device), noise=noise) - - self.init_latent = x - self.last_latent = x - self.step = 0 - - # Wrap the conditioning models with additional image conditioning for inpainting model - if image_conditioning is not None: - conditioning = {"c_concat": [image_conditioning], "c_crossattn": [conditioning]} - unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]} - - samples = self.launch_sampling(t_enc + 1, lambda: self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning)) - - return samples - - def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None): - self.initialize(p) - - self.init_latent = None - self.last_latent = x - self.step = 0 - - steps = self.adjust_steps_if_invalid(p, steps or p.steps) - - # Wrap the conditioning models with additional image conditioning for inpainting model - # dummy_for_plms is needed because PLMS code checks the first item in the dict to have the right shape - if image_conditioning is not None: - conditioning = {"dummy_for_plms": np.zeros((conditioning.shape[0],)), "c_crossattn": [conditioning], "c_concat": [image_conditioning]} - unconditional_conditioning = {"c_crossattn": [unconditional_conditioning], "c_concat": [image_conditioning]} - - samples_ddim = self.launch_sampling(steps, lambda: self.sampler.sample(S=steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x, eta=self.eta)[0]) - - return samples_ddim - - -class CFGDenoiser(torch.nn.Module): - def __init__(self, model): - super().__init__() - self.inner_model = model - self.mask = None - self.nmask = None - self.init_latent = None - self.step = 0 - - def combine_denoised(self, x_out, conds_list, uncond, cond_scale): - denoised_uncond = x_out[-uncond.shape[0]:] - denoised = torch.clone(denoised_uncond) - - for i, conds in enumerate(conds_list): - for cond_index, weight in conds: - denoised[i] += (x_out[cond_index] - denoised_uncond[i]) * (weight * cond_scale) - - return denoised - - def forward(self, x, sigma, uncond, cond, cond_scale, image_cond): - if state.interrupted or state.skipped: - raise InterruptedException - - conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step) - uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step) - - batch_size = len(conds_list) - repeats = [len(conds_list[i]) for i in range(batch_size)] - - x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x]) - image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond]) - sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma]) - - denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps) - cfg_denoiser_callback(denoiser_params) - x_in = denoiser_params.x - image_cond_in = denoiser_params.image_cond - sigma_in = denoiser_params.sigma - - if tensor.shape[1] == uncond.shape[1]: - cond_in = torch.cat([tensor, uncond]) - - if shared.batch_cond_uncond: - x_out = self.inner_model(x_in, sigma_in, cond={"c_crossattn": [cond_in], "c_concat": [image_cond_in]}) - else: - x_out = torch.zeros_like(x_in) - for batch_offset in range(0, x_out.shape[0], batch_size): - a = batch_offset - b = a + batch_size - x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": [cond_in[a:b]], "c_concat": [image_cond_in[a:b]]}) - else: - x_out = torch.zeros_like(x_in) - batch_size = batch_size*2 if shared.batch_cond_uncond else batch_size - for batch_offset in range(0, tensor.shape[0], batch_size): - a = batch_offset - b = min(a + batch_size, tensor.shape[0]) - x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": [tensor[a:b]], "c_concat": [image_cond_in[a:b]]}) - - x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond={"c_crossattn": [uncond], "c_concat": [image_cond_in[-uncond.shape[0]:]]}) - - devices.test_for_nans(x_out, "unet") - - if opts.live_preview_content == "Prompt": - store_latent(x_out[0:uncond.shape[0]]) - elif opts.live_preview_content == "Negative prompt": - store_latent(x_out[-uncond.shape[0]:]) - - denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale) - - if self.mask is not None: - denoised = self.init_latent * self.mask + self.nmask * denoised - - self.step += 1 - - return denoised - - -class TorchHijack: - def __init__(self, sampler_noises): - # Using a deque to efficiently receive the sampler_noises in the same order as the previous index-based - # implementation. - self.sampler_noises = deque(sampler_noises) - - def __getattr__(self, item): - if item == 'randn_like': - return self.randn_like - - if hasattr(torch, item): - return getattr(torch, item) - - raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item)) - - def randn_like(self, x): - if self.sampler_noises: - noise = self.sampler_noises.popleft() - if noise.shape == x.shape: - return noise - - if x.device.type == 'mps': - return torch.randn_like(x, device=devices.cpu).to(x.device) - else: - return torch.randn_like(x) - - # MPS fix for randn in torchsde def torchsde_randn(size, dtype, device, seed): if device.type == 'mps': @@ -407,146 +75,3 @@ def torchsde_randn(size, dtype, device, seed): torchsde._brownian.brownian_interval._randn = torchsde_randn - -class KDiffusionSampler: - def __init__(self, funcname, sd_model): - denoiser = k_diffusion.external.CompVisVDenoiser if sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser - - self.model_wrap = denoiser(sd_model, quantize=shared.opts.enable_quantization) - self.funcname = funcname - self.func = getattr(k_diffusion.sampling, self.funcname) - self.extra_params = sampler_extra_params.get(funcname, []) - self.model_wrap_cfg = CFGDenoiser(self.model_wrap) - self.sampler_noises = None - self.stop_at = None - self.eta = None - self.default_eta = 1.0 - self.config = None - self.last_latent = None - - self.conditioning_key = sd_model.model.conditioning_key - - def callback_state(self, d): - step = d['i'] - latent = d["denoised"] - if opts.live_preview_content == "Combined": - store_latent(latent) - self.last_latent = latent - - if self.stop_at is not None and step > self.stop_at: - raise InterruptedException - - state.sampling_step = step - shared.total_tqdm.update() - - def launch_sampling(self, steps, func): - state.sampling_steps = steps - state.sampling_step = 0 - - try: - return func() - except InterruptedException: - return self.last_latent - - def number_of_needed_noises(self, p): - return p.steps - - def initialize(self, p): - self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None - self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None - self.model_wrap_cfg.step = 0 - self.eta = p.eta or opts.eta_ancestral - - k_diffusion.sampling.torch = TorchHijack(self.sampler_noises if self.sampler_noises is not None else []) - - extra_params_kwargs = {} - for param_name in self.extra_params: - if hasattr(p, param_name) and param_name in inspect.signature(self.func).parameters: - extra_params_kwargs[param_name] = getattr(p, param_name) - - if 'eta' in inspect.signature(self.func).parameters: - extra_params_kwargs['eta'] = self.eta - - return extra_params_kwargs - - def get_sigmas(self, p, steps): - discard_next_to_last_sigma = self.config is not None and self.config.options.get('discard_next_to_last_sigma', False) - if opts.always_discard_next_to_last_sigma and not discard_next_to_last_sigma: - discard_next_to_last_sigma = True - p.extra_generation_params["Discard penultimate sigma"] = True - - steps += 1 if discard_next_to_last_sigma else 0 - - if p.sampler_noise_scheduler_override: - sigmas = p.sampler_noise_scheduler_override(steps) - elif self.config is not None and self.config.options.get('scheduler', None) == 'karras': - sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item()) - - sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=shared.device) - else: - sigmas = self.model_wrap.get_sigmas(steps) - - if discard_next_to_last_sigma: - sigmas = torch.cat([sigmas[:-2], sigmas[-1:]]) - - return sigmas - - def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None): - steps, t_enc = setup_img2img_steps(p, steps) - - sigmas = self.get_sigmas(p, steps) - - sigma_sched = sigmas[steps - t_enc - 1:] - xi = x + noise * sigma_sched[0] - - extra_params_kwargs = self.initialize(p) - if 'sigma_min' in inspect.signature(self.func).parameters: - ## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last - extra_params_kwargs['sigma_min'] = sigma_sched[-2] - if 'sigma_max' in inspect.signature(self.func).parameters: - extra_params_kwargs['sigma_max'] = sigma_sched[0] - if 'n' in inspect.signature(self.func).parameters: - extra_params_kwargs['n'] = len(sigma_sched) - 1 - if 'sigma_sched' in inspect.signature(self.func).parameters: - extra_params_kwargs['sigma_sched'] = sigma_sched - if 'sigmas' in inspect.signature(self.func).parameters: - extra_params_kwargs['sigmas'] = sigma_sched - - self.model_wrap_cfg.init_latent = x - self.last_latent = x - - samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args={ - 'cond': conditioning, - 'image_cond': image_conditioning, - 'uncond': unconditional_conditioning, - 'cond_scale': p.cfg_scale - }, disable=False, callback=self.callback_state, **extra_params_kwargs)) - - return samples - - def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning = None): - steps = steps or p.steps - - sigmas = self.get_sigmas(p, steps) - - x = x * sigmas[0] - - extra_params_kwargs = self.initialize(p) - if 'sigma_min' in inspect.signature(self.func).parameters: - extra_params_kwargs['sigma_min'] = self.model_wrap.sigmas[0].item() - extra_params_kwargs['sigma_max'] = self.model_wrap.sigmas[-1].item() - if 'n' in inspect.signature(self.func).parameters: - extra_params_kwargs['n'] = steps - else: - extra_params_kwargs['sigmas'] = sigmas - - self.last_latent = x - samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={ - 'cond': conditioning, - 'image_cond': image_conditioning, - 'uncond': unconditional_conditioning, - 'cond_scale': p.cfg_scale - }, disable=False, callback=self.callback_state, **extra_params_kwargs)) - - return samples - diff --git a/modules/sd_samplers_compvis.py b/modules/sd_samplers_compvis.py index a7910b56..3d35ff72 100644 --- a/modules/sd_samplers_compvis.py +++ b/modules/sd_samplers_compvis.py @@ -1,150 +1,10 @@ -from collections import namedtuple, deque +import math + import numpy as np -from math import floor import torch -import tqdm -from PIL import Image -import inspect -import k_diffusion.sampling -import torchsde._brownian.brownian_interval -import ldm.models.diffusion.ddim -import ldm.models.diffusion.plms -from modules import prompt_parser, devices, processing, images, sd_vae_approx -from modules.shared import opts, cmd_opts, state -import modules.shared as shared -from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback - - -SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options']) - -samplers_k_diffusion = [ - ('Euler a', 'sample_euler_ancestral', ['k_euler_a', 'k_euler_ancestral'], {}), - ('Euler', 'sample_euler', ['k_euler'], {}), - ('LMS', 'sample_lms', ['k_lms'], {}), - ('Heun', 'sample_heun', ['k_heun'], {}), - ('DPM2', 'sample_dpm_2', ['k_dpm_2'], {'discard_next_to_last_sigma': True}), - ('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {'discard_next_to_last_sigma': True}), - ('DPM++ 2S a', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a'], {}), - ('DPM++ 2M', 'sample_dpmpp_2m', ['k_dpmpp_2m'], {}), - ('DPM++ SDE', 'sample_dpmpp_sde', ['k_dpmpp_sde'], {}), - ('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {}), - ('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {}), - ('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}), - ('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True}), - ('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True}), - ('DPM++ 2S a Karras', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a_ka'], {'scheduler': 'karras'}), - ('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}), - ('DPM++ SDE Karras', 'sample_dpmpp_sde', ['k_dpmpp_sde_ka'], {'scheduler': 'karras'}), -] - -samplers_data_k_diffusion = [ - SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options) - for label, funcname, aliases, options in samplers_k_diffusion - if hasattr(k_diffusion.sampling, funcname) -] - -all_samplers = [ - *samplers_data_k_diffusion, - SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {}), - SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {}), -] -all_samplers_map = {x.name: x for x in all_samplers} - -samplers = [] -samplers_for_img2img = [] -samplers_map = {} - - -def create_sampler(name, model): - if name is not None: - config = all_samplers_map.get(name, None) - else: - config = all_samplers[0] - - assert config is not None, f'bad sampler name: {name}' - - sampler = config.constructor(model) - sampler.config = config - - return sampler - - -def set_samplers(): - global samplers, samplers_for_img2img - - hidden = set(opts.hide_samplers) - hidden_img2img = set(opts.hide_samplers + ['PLMS']) - - samplers = [x for x in all_samplers if x.name not in hidden] - samplers_for_img2img = [x for x in all_samplers if x.name not in hidden_img2img] - - samplers_map.clear() - for sampler in all_samplers: - samplers_map[sampler.name.lower()] = sampler.name - for alias in sampler.aliases: - samplers_map[alias.lower()] = sampler.name - - -set_samplers() - -sampler_extra_params = { - 'sample_euler': ['s_churn', 's_tmin', 's_tmax', 's_noise'], - 'sample_heun': ['s_churn', 's_tmin', 's_tmax', 's_noise'], - 'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'], -} - - -def setup_img2img_steps(p, steps=None): - if opts.img2img_fix_steps or steps is not None: - requested_steps = (steps or p.steps) - steps = int(requested_steps / min(p.denoising_strength, 0.999)) if p.denoising_strength > 0 else 0 - t_enc = requested_steps - 1 - else: - steps = p.steps - t_enc = int(min(p.denoising_strength, 0.999) * steps) - - return steps, t_enc - - -approximation_indexes = {"Full": 0, "Approx NN": 1, "Approx cheap": 2} - - -def single_sample_to_image(sample, approximation=None): - if approximation is None: - approximation = approximation_indexes.get(opts.show_progress_type, 0) - - if approximation == 2: - x_sample = sd_vae_approx.cheap_approximation(sample) - elif approximation == 1: - x_sample = sd_vae_approx.model()(sample.to(devices.device, devices.dtype).unsqueeze(0))[0].detach() - else: - x_sample = processing.decode_first_stage(shared.sd_model, sample.unsqueeze(0))[0] - - x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0) - x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2) - x_sample = x_sample.astype(np.uint8) - return Image.fromarray(x_sample) - - -def sample_to_image(samples, index=0, approximation=None): - return single_sample_to_image(samples[index], approximation) - - -def samples_to_image_grid(samples, approximation=None): - return images.image_grid([single_sample_to_image(sample, approximation) for sample in samples]) - - -def store_latent(decoded): - state.current_latent = decoded - - if opts.live_previews_enable and opts.show_progress_every_n_steps > 0 and shared.state.sampling_step % opts.show_progress_every_n_steps == 0: - if not shared.parallel_processing_allowed: - shared.state.assign_current_image(sample_to_image(decoded)) - - -class InterruptedException(BaseException): - pass +from modules.shared import state +from modules import sd_samplers_common, prompt_parser, shared class VanillaStableDiffusionSampler: @@ -174,15 +34,15 @@ class VanillaStableDiffusionSampler: try: return func() - except InterruptedException: + except sd_samplers_common.InterruptedException: return self.last_latent def p_sample_ddim_hook(self, x_dec, cond, ts, unconditional_conditioning, *args, **kwargs): if state.interrupted or state.skipped: - raise InterruptedException + raise sd_samplers_common.InterruptedException if self.stop_at is not None and self.step > self.stop_at: - raise InterruptedException + raise sd_samplers_common.InterruptedException # Have to unwrap the inpainting conditioning here to perform pre-processing image_conditioning = None @@ -224,7 +84,7 @@ class VanillaStableDiffusionSampler: else: self.last_latent = res[1] - store_latent(self.last_latent) + sd_samplers_common.store_latent(self.last_latent) self.step += 1 state.sampling_step = self.step @@ -233,7 +93,7 @@ class VanillaStableDiffusionSampler: return res def initialize(self, p): - self.eta = p.eta if p.eta is not None else opts.eta_ddim + self.eta = p.eta if p.eta is not None else shared.opts.eta_ddim for fieldname in ['p_sample_ddim', 'p_sample_plms']: if hasattr(self.sampler, fieldname): @@ -245,13 +105,13 @@ class VanillaStableDiffusionSampler: def adjust_steps_if_invalid(self, p, num_steps): if (self.config.name == 'DDIM' and p.ddim_discretize == 'uniform') or (self.config.name == 'PLMS'): valid_step = 999 / (1000 // num_steps) - if valid_step == floor(valid_step): + if valid_step == math.floor(valid_step): return int(valid_step) + 1 return num_steps def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None): - steps, t_enc = setup_img2img_steps(p, steps) + steps, t_enc = sd_samplers_common.setup_img2img_steps(p, steps) steps = self.adjust_steps_if_invalid(p, steps) self.initialize(p) @@ -289,264 +149,3 @@ class VanillaStableDiffusionSampler: samples_ddim = self.launch_sampling(steps, lambda: self.sampler.sample(S=steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x, eta=self.eta)[0]) return samples_ddim - - -class CFGDenoiser(torch.nn.Module): - def __init__(self, model): - super().__init__() - self.inner_model = model - self.mask = None - self.nmask = None - self.init_latent = None - self.step = 0 - - def combine_denoised(self, x_out, conds_list, uncond, cond_scale): - denoised_uncond = x_out[-uncond.shape[0]:] - denoised = torch.clone(denoised_uncond) - - for i, conds in enumerate(conds_list): - for cond_index, weight in conds: - denoised[i] += (x_out[cond_index] - denoised_uncond[i]) * (weight * cond_scale) - - return denoised - - def forward(self, x, sigma, uncond, cond, cond_scale, image_cond): - if state.interrupted or state.skipped: - raise InterruptedException - - conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step) - uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step) - - batch_size = len(conds_list) - repeats = [len(conds_list[i]) for i in range(batch_size)] - - x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x]) - image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond]) - sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma]) - - denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps) - cfg_denoiser_callback(denoiser_params) - x_in = denoiser_params.x - image_cond_in = denoiser_params.image_cond - sigma_in = denoiser_params.sigma - - if tensor.shape[1] == uncond.shape[1]: - cond_in = torch.cat([tensor, uncond]) - - if shared.batch_cond_uncond: - x_out = self.inner_model(x_in, sigma_in, cond={"c_crossattn": [cond_in], "c_concat": [image_cond_in]}) - else: - x_out = torch.zeros_like(x_in) - for batch_offset in range(0, x_out.shape[0], batch_size): - a = batch_offset - b = a + batch_size - x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": [cond_in[a:b]], "c_concat": [image_cond_in[a:b]]}) - else: - x_out = torch.zeros_like(x_in) - batch_size = batch_size*2 if shared.batch_cond_uncond else batch_size - for batch_offset in range(0, tensor.shape[0], batch_size): - a = batch_offset - b = min(a + batch_size, tensor.shape[0]) - x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": [tensor[a:b]], "c_concat": [image_cond_in[a:b]]}) - - x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond={"c_crossattn": [uncond], "c_concat": [image_cond_in[-uncond.shape[0]:]]}) - - devices.test_for_nans(x_out, "unet") - - if opts.live_preview_content == "Prompt": - store_latent(x_out[0:uncond.shape[0]]) - elif opts.live_preview_content == "Negative prompt": - store_latent(x_out[-uncond.shape[0]:]) - - denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale) - - if self.mask is not None: - denoised = self.init_latent * self.mask + self.nmask * denoised - - self.step += 1 - - return denoised - - -class TorchHijack: - def __init__(self, sampler_noises): - # Using a deque to efficiently receive the sampler_noises in the same order as the previous index-based - # implementation. - self.sampler_noises = deque(sampler_noises) - - def __getattr__(self, item): - if item == 'randn_like': - return self.randn_like - - if hasattr(torch, item): - return getattr(torch, item) - - raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item)) - - def randn_like(self, x): - if self.sampler_noises: - noise = self.sampler_noises.popleft() - if noise.shape == x.shape: - return noise - - if x.device.type == 'mps': - return torch.randn_like(x, device=devices.cpu).to(x.device) - else: - return torch.randn_like(x) - - -# MPS fix for randn in torchsde -def torchsde_randn(size, dtype, device, seed): - if device.type == 'mps': - generator = torch.Generator(devices.cpu).manual_seed(int(seed)) - return torch.randn(size, dtype=dtype, device=devices.cpu, generator=generator).to(device) - else: - generator = torch.Generator(device).manual_seed(int(seed)) - return torch.randn(size, dtype=dtype, device=device, generator=generator) - - -torchsde._brownian.brownian_interval._randn = torchsde_randn - - -class KDiffusionSampler: - def __init__(self, funcname, sd_model): - denoiser = k_diffusion.external.CompVisVDenoiser if sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser - - self.model_wrap = denoiser(sd_model, quantize=shared.opts.enable_quantization) - self.funcname = funcname - self.func = getattr(k_diffusion.sampling, self.funcname) - self.extra_params = sampler_extra_params.get(funcname, []) - self.model_wrap_cfg = CFGDenoiser(self.model_wrap) - self.sampler_noises = None - self.stop_at = None - self.eta = None - self.default_eta = 1.0 - self.config = None - self.last_latent = None - - self.conditioning_key = sd_model.model.conditioning_key - - def callback_state(self, d): - step = d['i'] - latent = d["denoised"] - if opts.live_preview_content == "Combined": - store_latent(latent) - self.last_latent = latent - - if self.stop_at is not None and step > self.stop_at: - raise InterruptedException - - state.sampling_step = step - shared.total_tqdm.update() - - def launch_sampling(self, steps, func): - state.sampling_steps = steps - state.sampling_step = 0 - - try: - return func() - except InterruptedException: - return self.last_latent - - def number_of_needed_noises(self, p): - return p.steps - - def initialize(self, p): - self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None - self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None - self.model_wrap_cfg.step = 0 - self.eta = p.eta or opts.eta_ancestral - - k_diffusion.sampling.torch = TorchHijack(self.sampler_noises if self.sampler_noises is not None else []) - - extra_params_kwargs = {} - for param_name in self.extra_params: - if hasattr(p, param_name) and param_name in inspect.signature(self.func).parameters: - extra_params_kwargs[param_name] = getattr(p, param_name) - - if 'eta' in inspect.signature(self.func).parameters: - extra_params_kwargs['eta'] = self.eta - - return extra_params_kwargs - - def get_sigmas(self, p, steps): - discard_next_to_last_sigma = self.config is not None and self.config.options.get('discard_next_to_last_sigma', False) - if opts.always_discard_next_to_last_sigma and not discard_next_to_last_sigma: - discard_next_to_last_sigma = True - p.extra_generation_params["Discard penultimate sigma"] = True - - steps += 1 if discard_next_to_last_sigma else 0 - - if p.sampler_noise_scheduler_override: - sigmas = p.sampler_noise_scheduler_override(steps) - elif self.config is not None and self.config.options.get('scheduler', None) == 'karras': - sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item()) - - sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=shared.device) - else: - sigmas = self.model_wrap.get_sigmas(steps) - - if discard_next_to_last_sigma: - sigmas = torch.cat([sigmas[:-2], sigmas[-1:]]) - - return sigmas - - def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None): - steps, t_enc = setup_img2img_steps(p, steps) - - sigmas = self.get_sigmas(p, steps) - - sigma_sched = sigmas[steps - t_enc - 1:] - xi = x + noise * sigma_sched[0] - - extra_params_kwargs = self.initialize(p) - if 'sigma_min' in inspect.signature(self.func).parameters: - ## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last - extra_params_kwargs['sigma_min'] = sigma_sched[-2] - if 'sigma_max' in inspect.signature(self.func).parameters: - extra_params_kwargs['sigma_max'] = sigma_sched[0] - if 'n' in inspect.signature(self.func).parameters: - extra_params_kwargs['n'] = len(sigma_sched) - 1 - if 'sigma_sched' in inspect.signature(self.func).parameters: - extra_params_kwargs['sigma_sched'] = sigma_sched - if 'sigmas' in inspect.signature(self.func).parameters: - extra_params_kwargs['sigmas'] = sigma_sched - - self.model_wrap_cfg.init_latent = x - self.last_latent = x - - samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args={ - 'cond': conditioning, - 'image_cond': image_conditioning, - 'uncond': unconditional_conditioning, - 'cond_scale': p.cfg_scale - }, disable=False, callback=self.callback_state, **extra_params_kwargs)) - - return samples - - def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning = None): - steps = steps or p.steps - - sigmas = self.get_sigmas(p, steps) - - x = x * sigmas[0] - - extra_params_kwargs = self.initialize(p) - if 'sigma_min' in inspect.signature(self.func).parameters: - extra_params_kwargs['sigma_min'] = self.model_wrap.sigmas[0].item() - extra_params_kwargs['sigma_max'] = self.model_wrap.sigmas[-1].item() - if 'n' in inspect.signature(self.func).parameters: - extra_params_kwargs['n'] = steps - else: - extra_params_kwargs['sigmas'] = sigmas - - self.last_latent = x - samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={ - 'cond': conditioning, - 'image_cond': image_conditioning, - 'uncond': unconditional_conditioning, - 'cond_scale': p.cfg_scale - }, disable=False, callback=self.callback_state, **extra_params_kwargs)) - - return samples - From f4d0538bf2f6430b145bb26a294b7f82b50f031a Mon Sep 17 00:00:00 2001 From: Andrey <16777216c@gmail.com> Date: Mon, 30 Jan 2023 09:51:23 +0300 Subject: [PATCH 20/54] Split history sd_samplers.py to sd_samplers_kdiffusion.py --- modules/{sd_samplers.py => sd_samplers_kdiffusion.py} | 0 1 file changed, 0 insertions(+), 0 deletions(-) rename modules/{sd_samplers.py => sd_samplers_kdiffusion.py} (100%) diff --git a/modules/sd_samplers.py b/modules/sd_samplers_kdiffusion.py similarity index 100% rename from modules/sd_samplers.py rename to modules/sd_samplers_kdiffusion.py From 2db8ed32cd71fab68169dcb1b49998917190e3c7 Mon Sep 17 00:00:00 2001 From: Andrey <16777216c@gmail.com> Date: Mon, 30 Jan 2023 09:51:23 +0300 Subject: [PATCH 21/54] Split history sd_samplers.py to sd_samplers_kdiffusion.py --- modules/{sd_samplers.py => temp} | 0 1 file changed, 0 insertions(+), 0 deletions(-) rename modules/{sd_samplers.py => temp} (100%) diff --git a/modules/sd_samplers.py b/modules/temp similarity index 100% rename from modules/sd_samplers.py rename to modules/temp From 274474105a5166a985a47508ffd0695db41623a5 Mon Sep 17 00:00:00 2001 From: Andrey <16777216c@gmail.com> Date: Mon, 30 Jan 2023 09:51:23 +0300 Subject: [PATCH 22/54] Split history sd_samplers.py to sd_samplers_kdiffusion.py --- modules/{temp => sd_samplers.py} | 0 1 file changed, 0 insertions(+), 0 deletions(-) rename modules/{temp => sd_samplers.py} (100%) diff --git a/modules/temp b/modules/sd_samplers.py similarity index 100% rename from modules/temp rename to modules/sd_samplers.py From 4df63d2d197f26181758b5108f003f225fe84874 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Mon, 30 Jan 2023 10:11:30 +0300 Subject: [PATCH 23/54] split samplers into one more files for k-diffusion --- modules/sd_samplers.py | 302 +----------------------------- modules/sd_samplers_common.py | 3 +- modules/sd_samplers_compvis.py | 8 + modules/sd_samplers_kdiffusion.py | 57 +----- 4 files changed, 22 insertions(+), 348 deletions(-) diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py index 9a29f1ae..28c2136f 100644 --- a/modules/sd_samplers.py +++ b/modules/sd_samplers.py @@ -1,49 +1,11 @@ -from collections import deque -import torch -import inspect -import k_diffusion.sampling -import ldm.models.diffusion.ddim -import ldm.models.diffusion.plms -from modules import prompt_parser, devices, sd_samplers_common, sd_samplers_compvis - -from modules.shared import opts, state -import modules.shared as shared -from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback +from modules import sd_samplers_compvis, sd_samplers_kdiffusion, shared # imports for functions that previously were here and are used by other modules from modules.sd_samplers_common import samples_to_image_grid, sample_to_image - -samplers_k_diffusion = [ - ('Euler a', 'sample_euler_ancestral', ['k_euler_a', 'k_euler_ancestral'], {}), - ('Euler', 'sample_euler', ['k_euler'], {}), - ('LMS', 'sample_lms', ['k_lms'], {}), - ('Heun', 'sample_heun', ['k_heun'], {}), - ('DPM2', 'sample_dpm_2', ['k_dpm_2'], {'discard_next_to_last_sigma': True}), - ('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {'discard_next_to_last_sigma': True}), - ('DPM++ 2S a', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a'], {}), - ('DPM++ 2M', 'sample_dpmpp_2m', ['k_dpmpp_2m'], {}), - ('DPM++ SDE', 'sample_dpmpp_sde', ['k_dpmpp_sde'], {}), - ('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {}), - ('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {}), - ('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}), - ('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True}), - ('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True}), - ('DPM++ 2S a Karras', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a_ka'], {'scheduler': 'karras'}), - ('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}), - ('DPM++ SDE Karras', 'sample_dpmpp_sde', ['k_dpmpp_sde_ka'], {'scheduler': 'karras'}), -] - -samplers_data_k_diffusion = [ - sd_samplers_common.SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options) - for label, funcname, aliases, options in samplers_k_diffusion - if hasattr(k_diffusion.sampling, funcname) -] - all_samplers = [ - *samplers_data_k_diffusion, - sd_samplers_common.SamplerData('DDIM', lambda model: sd_samplers_compvis.VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {}), - sd_samplers_common.SamplerData('PLMS', lambda model: sd_samplers_compvis.VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {}), + *sd_samplers_kdiffusion.samplers_data_k_diffusion, + *sd_samplers_compvis.samplers_data_compvis, ] all_samplers_map = {x.name: x for x in all_samplers} @@ -69,8 +31,8 @@ def create_sampler(name, model): def set_samplers(): global samplers, samplers_for_img2img - hidden = set(opts.hide_samplers) - hidden_img2img = set(opts.hide_samplers + ['PLMS']) + hidden = set(shared.opts.hide_samplers) + hidden_img2img = set(shared.opts.hide_samplers + ['PLMS']) samplers = [x for x in all_samplers if x.name not in hidden] samplers_for_img2img = [x for x in all_samplers if x.name not in hidden_img2img] @@ -83,257 +45,3 @@ def set_samplers(): set_samplers() - -sampler_extra_params = { - 'sample_euler': ['s_churn', 's_tmin', 's_tmax', 's_noise'], - 'sample_heun': ['s_churn', 's_tmin', 's_tmax', 's_noise'], - 'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'], -} - - -class CFGDenoiser(torch.nn.Module): - def __init__(self, model): - super().__init__() - self.inner_model = model - self.mask = None - self.nmask = None - self.init_latent = None - self.step = 0 - - def combine_denoised(self, x_out, conds_list, uncond, cond_scale): - denoised_uncond = x_out[-uncond.shape[0]:] - denoised = torch.clone(denoised_uncond) - - for i, conds in enumerate(conds_list): - for cond_index, weight in conds: - denoised[i] += (x_out[cond_index] - denoised_uncond[i]) * (weight * cond_scale) - - return denoised - - def forward(self, x, sigma, uncond, cond, cond_scale, image_cond): - if state.interrupted or state.skipped: - raise sd_samplers_common.InterruptedException - - conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step) - uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step) - - batch_size = len(conds_list) - repeats = [len(conds_list[i]) for i in range(batch_size)] - - x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x]) - image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond]) - sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma]) - - denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps) - cfg_denoiser_callback(denoiser_params) - x_in = denoiser_params.x - image_cond_in = denoiser_params.image_cond - sigma_in = denoiser_params.sigma - - if tensor.shape[1] == uncond.shape[1]: - cond_in = torch.cat([tensor, uncond]) - - if shared.batch_cond_uncond: - x_out = self.inner_model(x_in, sigma_in, cond={"c_crossattn": [cond_in], "c_concat": [image_cond_in]}) - else: - x_out = torch.zeros_like(x_in) - for batch_offset in range(0, x_out.shape[0], batch_size): - a = batch_offset - b = a + batch_size - x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": [cond_in[a:b]], "c_concat": [image_cond_in[a:b]]}) - else: - x_out = torch.zeros_like(x_in) - batch_size = batch_size*2 if shared.batch_cond_uncond else batch_size - for batch_offset in range(0, tensor.shape[0], batch_size): - a = batch_offset - b = min(a + batch_size, tensor.shape[0]) - x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": [tensor[a:b]], "c_concat": [image_cond_in[a:b]]}) - - x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond={"c_crossattn": [uncond], "c_concat": [image_cond_in[-uncond.shape[0]:]]}) - - devices.test_for_nans(x_out, "unet") - - if opts.live_preview_content == "Prompt": - sd_samplers_common.store_latent(x_out[0:uncond.shape[0]]) - elif opts.live_preview_content == "Negative prompt": - sd_samplers_common.store_latent(x_out[-uncond.shape[0]:]) - - denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale) - - if self.mask is not None: - denoised = self.init_latent * self.mask + self.nmask * denoised - - self.step += 1 - - return denoised - - -class TorchHijack: - def __init__(self, sampler_noises): - # Using a deque to efficiently receive the sampler_noises in the same order as the previous index-based - # implementation. - self.sampler_noises = deque(sampler_noises) - - def __getattr__(self, item): - if item == 'randn_like': - return self.randn_like - - if hasattr(torch, item): - return getattr(torch, item) - - raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item)) - - def randn_like(self, x): - if self.sampler_noises: - noise = self.sampler_noises.popleft() - if noise.shape == x.shape: - return noise - - if x.device.type == 'mps': - return torch.randn_like(x, device=devices.cpu).to(x.device) - else: - return torch.randn_like(x) - - -class KDiffusionSampler: - def __init__(self, funcname, sd_model): - denoiser = k_diffusion.external.CompVisVDenoiser if sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser - - self.model_wrap = denoiser(sd_model, quantize=shared.opts.enable_quantization) - self.funcname = funcname - self.func = getattr(k_diffusion.sampling, self.funcname) - self.extra_params = sampler_extra_params.get(funcname, []) - self.model_wrap_cfg = CFGDenoiser(self.model_wrap) - self.sampler_noises = None - self.stop_at = None - self.eta = None - self.default_eta = 1.0 - self.config = None - self.last_latent = None - - self.conditioning_key = sd_model.model.conditioning_key - - def callback_state(self, d): - step = d['i'] - latent = d["denoised"] - if opts.live_preview_content == "Combined": - sd_samplers_common.store_latent(latent) - self.last_latent = latent - - if self.stop_at is not None and step > self.stop_at: - raise sd_samplers_common.InterruptedException - - state.sampling_step = step - shared.total_tqdm.update() - - def launch_sampling(self, steps, func): - state.sampling_steps = steps - state.sampling_step = 0 - - try: - return func() - except sd_samplers_common.InterruptedException: - return self.last_latent - - def number_of_needed_noises(self, p): - return p.steps - - def initialize(self, p): - self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None - self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None - self.model_wrap_cfg.step = 0 - self.eta = p.eta or opts.eta_ancestral - - k_diffusion.sampling.torch = TorchHijack(self.sampler_noises if self.sampler_noises is not None else []) - - extra_params_kwargs = {} - for param_name in self.extra_params: - if hasattr(p, param_name) and param_name in inspect.signature(self.func).parameters: - extra_params_kwargs[param_name] = getattr(p, param_name) - - if 'eta' in inspect.signature(self.func).parameters: - extra_params_kwargs['eta'] = self.eta - - return extra_params_kwargs - - def get_sigmas(self, p, steps): - discard_next_to_last_sigma = self.config is not None and self.config.options.get('discard_next_to_last_sigma', False) - if opts.always_discard_next_to_last_sigma and not discard_next_to_last_sigma: - discard_next_to_last_sigma = True - p.extra_generation_params["Discard penultimate sigma"] = True - - steps += 1 if discard_next_to_last_sigma else 0 - - if p.sampler_noise_scheduler_override: - sigmas = p.sampler_noise_scheduler_override(steps) - elif self.config is not None and self.config.options.get('scheduler', None) == 'karras': - sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item()) - - sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=shared.device) - else: - sigmas = self.model_wrap.get_sigmas(steps) - - if discard_next_to_last_sigma: - sigmas = torch.cat([sigmas[:-2], sigmas[-1:]]) - - return sigmas - - def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None): - steps, t_enc = sd_samplers_common.setup_img2img_steps(p, steps) - - sigmas = self.get_sigmas(p, steps) - - sigma_sched = sigmas[steps - t_enc - 1:] - xi = x + noise * sigma_sched[0] - - extra_params_kwargs = self.initialize(p) - if 'sigma_min' in inspect.signature(self.func).parameters: - ## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last - extra_params_kwargs['sigma_min'] = sigma_sched[-2] - if 'sigma_max' in inspect.signature(self.func).parameters: - extra_params_kwargs['sigma_max'] = sigma_sched[0] - if 'n' in inspect.signature(self.func).parameters: - extra_params_kwargs['n'] = len(sigma_sched) - 1 - if 'sigma_sched' in inspect.signature(self.func).parameters: - extra_params_kwargs['sigma_sched'] = sigma_sched - if 'sigmas' in inspect.signature(self.func).parameters: - extra_params_kwargs['sigmas'] = sigma_sched - - self.model_wrap_cfg.init_latent = x - self.last_latent = x - - samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args={ - 'cond': conditioning, - 'image_cond': image_conditioning, - 'uncond': unconditional_conditioning, - 'cond_scale': p.cfg_scale - }, disable=False, callback=self.callback_state, **extra_params_kwargs)) - - return samples - - def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning = None): - steps = steps or p.steps - - sigmas = self.get_sigmas(p, steps) - - x = x * sigmas[0] - - extra_params_kwargs = self.initialize(p) - if 'sigma_min' in inspect.signature(self.func).parameters: - extra_params_kwargs['sigma_min'] = self.model_wrap.sigmas[0].item() - extra_params_kwargs['sigma_max'] = self.model_wrap.sigmas[-1].item() - if 'n' in inspect.signature(self.func).parameters: - extra_params_kwargs['n'] = steps - else: - extra_params_kwargs['sigmas'] = sigmas - - self.last_latent = x - samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={ - 'cond': conditioning, - 'image_cond': image_conditioning, - 'uncond': unconditional_conditioning, - 'cond_scale': p.cfg_scale - }, disable=False, callback=self.callback_state, **extra_params_kwargs)) - - return samples - diff --git a/modules/sd_samplers_common.py b/modules/sd_samplers_common.py index 5b06e341..3c03d442 100644 --- a/modules/sd_samplers_common.py +++ b/modules/sd_samplers_common.py @@ -1,4 +1,4 @@ -from collections import namedtuple, deque +from collections import namedtuple import numpy as np import torch from PIL import Image @@ -64,6 +64,7 @@ class InterruptedException(BaseException): # MPS fix for randn in torchsde +# XXX move this to separate file for MPS def torchsde_randn(size, dtype, device, seed): if device.type == 'mps': generator = torch.Generator(devices.cpu).manual_seed(int(seed)) diff --git a/modules/sd_samplers_compvis.py b/modules/sd_samplers_compvis.py index 3d35ff72..88541193 100644 --- a/modules/sd_samplers_compvis.py +++ b/modules/sd_samplers_compvis.py @@ -1,4 +1,6 @@ import math +import ldm.models.diffusion.ddim +import ldm.models.diffusion.plms import numpy as np import torch @@ -7,6 +9,12 @@ from modules.shared import state from modules import sd_samplers_common, prompt_parser, shared +samplers_data_compvis = [ + sd_samplers_common.SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {}), + sd_samplers_common.SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {}), +] + + class VanillaStableDiffusionSampler: def __init__(self, constructor, sd_model): self.sampler = constructor(sd_model) diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index 9a29f1ae..adb6883e 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -2,18 +2,12 @@ from collections import deque import torch import inspect import k_diffusion.sampling -import ldm.models.diffusion.ddim -import ldm.models.diffusion.plms from modules import prompt_parser, devices, sd_samplers_common, sd_samplers_compvis from modules.shared import opts, state import modules.shared as shared from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback -# imports for functions that previously were here and are used by other modules -from modules.sd_samplers_common import samples_to_image_grid, sample_to_image - - samplers_k_diffusion = [ ('Euler a', 'sample_euler_ancestral', ['k_euler_a', 'k_euler_ancestral'], {}), ('Euler', 'sample_euler', ['k_euler'], {}), @@ -40,50 +34,6 @@ samplers_data_k_diffusion = [ if hasattr(k_diffusion.sampling, funcname) ] -all_samplers = [ - *samplers_data_k_diffusion, - sd_samplers_common.SamplerData('DDIM', lambda model: sd_samplers_compvis.VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {}), - sd_samplers_common.SamplerData('PLMS', lambda model: sd_samplers_compvis.VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {}), -] -all_samplers_map = {x.name: x for x in all_samplers} - -samplers = [] -samplers_for_img2img = [] -samplers_map = {} - - -def create_sampler(name, model): - if name is not None: - config = all_samplers_map.get(name, None) - else: - config = all_samplers[0] - - assert config is not None, f'bad sampler name: {name}' - - sampler = config.constructor(model) - sampler.config = config - - return sampler - - -def set_samplers(): - global samplers, samplers_for_img2img - - hidden = set(opts.hide_samplers) - hidden_img2img = set(opts.hide_samplers + ['PLMS']) - - samplers = [x for x in all_samplers if x.name not in hidden] - samplers_for_img2img = [x for x in all_samplers if x.name not in hidden_img2img] - - samplers_map.clear() - for sampler in all_samplers: - samplers_map[sampler.name.lower()] = sampler.name - for alias in sampler.aliases: - samplers_map[alias.lower()] = sampler.name - - -set_samplers() - sampler_extra_params = { 'sample_euler': ['s_churn', 's_tmin', 's_tmax', 's_noise'], 'sample_heun': ['s_churn', 's_tmin', 's_tmax', 's_noise'], @@ -92,6 +42,13 @@ sampler_extra_params = { class CFGDenoiser(torch.nn.Module): + """ + Classifier free guidance denoiser. A wrapper for stable diffusion model (specifically for unet) + that can take a noisy picture and produce a noise-free picture using two guidances (prompts) + instead of one. Originally, the second prompt is just an empty string, but we use non-empty + negative prompt. + """ + def __init__(self, model): super().__init__() self.inner_model = model From 040ec7a80e23d340efe1108b9de5ead62d9011a9 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Mon, 30 Jan 2023 10:47:09 +0300 Subject: [PATCH 24/54] make the program read Eta and Eta DDIM from generation parameters --- modules/generation_parameters_copypaste.py | 2 ++ modules/processing.py | 1 - modules/sd_samplers_compvis.py | 3 ++- modules/sd_samplers_kdiffusion.py | 8 +++++--- 4 files changed, 9 insertions(+), 5 deletions(-) diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py index 2a10524f..7ee8ee10 100644 --- a/modules/generation_parameters_copypaste.py +++ b/modules/generation_parameters_copypaste.py @@ -293,6 +293,8 @@ infotext_to_setting_name_mapping = [ ('Model hash', 'sd_model_checkpoint'), ('ENSD', 'eta_noise_seed_delta'), ('Noise multiplier', 'initial_noise_multiplier'), + ('Eta', 'eta_ancestral'), + ('Eta DDIM', 'eta_ddim'), ] diff --git a/modules/processing.py b/modules/processing.py index 2d295932..e544c2e1 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -455,7 +455,6 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter "Seed resize from": (None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"), "Denoising strength": getattr(p, 'denoising_strength', None), "Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None, - "Eta": (None if p.sampler is None or p.sampler.eta == p.sampler.default_eta else p.sampler.eta), "Clip skip": None if clip_skip <= 1 else clip_skip, "ENSD": None if opts.eta_noise_seed_delta == 0 else opts.eta_noise_seed_delta, } diff --git a/modules/sd_samplers_compvis.py b/modules/sd_samplers_compvis.py index 88541193..d03131cd 100644 --- a/modules/sd_samplers_compvis.py +++ b/modules/sd_samplers_compvis.py @@ -27,7 +27,6 @@ class VanillaStableDiffusionSampler: self.step = 0 self.stop_at = None self.eta = None - self.default_eta = 0.0 self.config = None self.last_latent = None @@ -102,6 +101,8 @@ class VanillaStableDiffusionSampler: def initialize(self, p): self.eta = p.eta if p.eta is not None else shared.opts.eta_ddim + if self.eta != 0.0: + p.extra_generation_params["Eta DDIM"] = self.eta for fieldname in ['p_sample_ddim', 'p_sample_plms']: if hasattr(self.sampler, fieldname): diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index adb6883e..aa7f106b 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -2,7 +2,7 @@ from collections import deque import torch import inspect import k_diffusion.sampling -from modules import prompt_parser, devices, sd_samplers_common, sd_samplers_compvis +from modules import prompt_parser, devices, sd_samplers_common from modules.shared import opts, state import modules.shared as shared @@ -164,7 +164,6 @@ class KDiffusionSampler: self.sampler_noises = None self.stop_at = None self.eta = None - self.default_eta = 1.0 self.config = None self.last_latent = None @@ -199,7 +198,7 @@ class KDiffusionSampler: self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None self.model_wrap_cfg.step = 0 - self.eta = p.eta or opts.eta_ancestral + self.eta = p.eta if p.eta is not None else opts.eta_ancestral k_diffusion.sampling.torch = TorchHijack(self.sampler_noises if self.sampler_noises is not None else []) @@ -209,6 +208,9 @@ class KDiffusionSampler: extra_params_kwargs[param_name] = getattr(p, param_name) if 'eta' in inspect.signature(self.func).parameters: + if self.eta != 1.0: + p.extra_generation_params["Eta"] = self.eta + extra_params_kwargs['eta'] = self.eta return extra_params_kwargs From ab059b6e4863eaa5e118a2043192584e6df51ed4 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Mon, 30 Jan 2023 10:52:15 +0300 Subject: [PATCH 25/54] make the program read Discard penultimate sigma from generation parameters --- modules/generation_parameters_copypaste.py | 1 + 1 file changed, 1 insertion(+) diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py index 7ee8ee10..fc9e17aa 100644 --- a/modules/generation_parameters_copypaste.py +++ b/modules/generation_parameters_copypaste.py @@ -295,6 +295,7 @@ infotext_to_setting_name_mapping = [ ('Noise multiplier', 'initial_noise_multiplier'), ('Eta', 'eta_ancestral'), ('Eta DDIM', 'eta_ddim'), + ('Discard penultimate sigma', 'always_discard_next_to_last_sigma') ] From aa4688eb8345de583070ca9ddb4c6f585f06762b Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Mon, 30 Jan 2023 13:29:44 +0300 Subject: [PATCH 26/54] disable EMA weights for instructpix2pix model, whcih should get memory usage as well as image quality to what it was before d2ac95fa7b2a8d0bcc5361ee16dba9cbb81ff8b2 --- configs/instruct-pix2pix.yaml | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/configs/instruct-pix2pix.yaml b/configs/instruct-pix2pix.yaml index 437ddcef..4e896879 100644 --- a/configs/instruct-pix2pix.yaml +++ b/configs/instruct-pix2pix.yaml @@ -20,8 +20,7 @@ model: conditioning_key: hybrid monitor: val/loss_simple_ema scale_factor: 0.18215 - use_ema: true - load_ema: true + use_ema: false scheduler_config: # 10000 warmup steps target: ldm.lr_scheduler.LambdaLinearScheduler From ee9fdf7f62984dc30770fb1a73e68736b319746f Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Mon, 30 Jan 2023 14:56:28 +0300 Subject: [PATCH 27/54] Add --skip-version-check to disable messages asking users to upgrade torch. --- modules/shared.py | 2 ++ webui.py | 10 +++++++++- 2 files changed, 11 insertions(+), 1 deletion(-) diff --git a/modules/shared.py b/modules/shared.py index 96a2572f..69634fd8 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -105,6 +105,8 @@ parser.add_argument("--tls-keyfile", type=str, help="Partially enables TLS, requ parser.add_argument("--tls-certfile", type=str, help="Partially enables TLS, requires --tls-keyfile to fully function", default=None) parser.add_argument("--server-name", type=str, help="Sets hostname of server", default=None) parser.add_argument("--gradio-queue", action='store_true', help="Uses gradio queue; experimental option; breaks restart UI button") +parser.add_argument("--skip-version-check", action='store_true', help="Do not check versions of torch and xformers") + script_loading.preload_extensions(extensions.extensions_dir, parser) diff --git a/webui.py b/webui.py index 0d0b8364..5b5c2139 100644 --- a/webui.py +++ b/webui.py @@ -52,6 +52,9 @@ else: def check_versions(): + if shared.cmd_opts.skip_version_check: + return + expected_torch_version = "1.13.1" if version.parse(torch.__version__) < version.parse(expected_torch_version): @@ -59,7 +62,10 @@ def check_versions(): You are running torch {torch.__version__}. The program is tested to work with torch {expected_torch_version}. To reinstall the desired version, run with commandline flag --reinstall-torch. -Beware that this will cause a lot of large files to be downloaded. +Beware that this will cause a lot of large files to be downloaded, as well as +there are reports of issues with training tab on the latest version. + +Use --skip-version-check commandline argument to disable this check. """.strip()) expected_xformers_version = "0.0.16rc425" @@ -71,6 +77,8 @@ Beware that this will cause a lot of large files to be downloaded. You are running xformers {xformers.__version__}. The program is tested to work with xformers {expected_xformers_version}. To reinstall the desired version, run with commandline flag --reinstall-xformers. + +Use --skip-version-check commandline argument to disable this check. """.strip()) From 19de2a626b92bcfe83a97477f20d0faf9b3204c0 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Mon, 30 Jan 2023 15:48:09 +0300 Subject: [PATCH 28/54] make linux launch.py use XFORMERS_PACKAGE var too; thanks, acncagua --- launch.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/launch.py b/launch.py index 25909469..c44c48fa 100644 --- a/launch.py +++ b/launch.py @@ -290,7 +290,7 @@ def prepare_environment(): if not is_installed("xformers"): exit(0) elif platform.system() == "Linux": - run_pip("install xformers==0.0.16rc425", "xformers") + run_pip(f"install xformers=={xformers_package}", "xformers") if not is_installed("pyngrok") and ngrok: run_pip("install pyngrok", "ngrok") From 2c1bb46c7ad5b4536f6587d327a03f0ff7811c5d Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Mon, 30 Jan 2023 18:48:10 +0300 Subject: [PATCH 29/54] amend the error in previous commit --- launch.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/launch.py b/launch.py index c44c48fa..9fd766d1 100644 --- a/launch.py +++ b/launch.py @@ -290,7 +290,7 @@ def prepare_environment(): if not is_installed("xformers"): exit(0) elif platform.system() == "Linux": - run_pip(f"install xformers=={xformers_package}", "xformers") + run_pip(f"install {xformers_package}", "xformers") if not is_installed("pyngrok") and ngrok: run_pip("install pyngrok", "ngrok") From bfe7e7f15fbceccd016957769cd5b5a26c82a45b Mon Sep 17 00:00:00 2001 From: Piotr Pomierski Date: Tue, 31 Jan 2023 01:51:07 +0100 Subject: [PATCH 30/54] Fix missing tooltip for 'Clear prompt' button --- javascript/hints.js | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/javascript/hints.js b/javascript/hints.js index 7b60b25e..75792d0d 100644 --- a/javascript/hints.js +++ b/javascript/hints.js @@ -17,7 +17,7 @@ titles = { "\u2199\ufe0f": "Read generation parameters from prompt or last generation if prompt is empty into user interface.", "\u{1f4c2}": "Open images output directory", "\u{1f4be}": "Save style", - "\U0001F5D1": "Clear prompt", + "\u{1f5d1}": "Clear prompt", "\u{1f4cb}": "Apply selected styles to current prompt", "\u{1f4d2}": "Paste available values into the field", "\u{1f3b4}": "Show extra networks", From 0426b3478937e54446337cf435ed3f548688b120 Mon Sep 17 00:00:00 2001 From: Joey Sanchez Date: Mon, 30 Jan 2023 21:46:13 -0500 Subject: [PATCH 31/54] Adding default true to use_original_name_batch as images should by default hold the same name to help keep sequenced images in their correct order --- modules/shared.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/modules/shared.py b/modules/shared.py index 69634fd8..5600d480 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -327,7 +327,7 @@ options_templates.update(options_section(('saving-images', "Saving images/grids" "jpeg_quality": OptionInfo(80, "Quality for saved jpeg images", gr.Slider, {"minimum": 1, "maximum": 100, "step": 1}), "export_for_4chan": OptionInfo(True, "If PNG image is larger than 4MB or any dimension is larger than 4000, downscale and save copy as JPG"), - "use_original_name_batch": OptionInfo(False, "Use original name for output filename during batch process in extras tab"), + "use_original_name_batch": OptionInfo(True, "Use original name for output filename during batch process in extras tab"), "use_upscaler_name_as_suffix": OptionInfo(False, "Use upscaler name as filename suffix in the extras tab"), "save_selected_only": OptionInfo(True, "When using 'Save' button, only save a single selected image"), "do_not_add_watermark": OptionInfo(False, "Do not add watermark to images"), From 7738c057ce938ca5c5a53a95e2023d3bcf14f06a Mon Sep 17 00:00:00 2001 From: brkirch Date: Wed, 1 Feb 2023 05:23:58 -0500 Subject: [PATCH 32/54] MPS fix is still needed :( Apparently I did not test with large enough images to trigger the bug with torch.narrow on MPS --- modules/devices.py | 3 +++ 1 file changed, 3 insertions(+) diff --git a/modules/devices.py b/modules/devices.py index 655ca1d3..f4afb897 100644 --- a/modules/devices.py +++ b/modules/devices.py @@ -207,3 +207,6 @@ if has_mps(): cumsum_needs_bool_fix = not torch.BoolTensor([True,True]).to(device=torch.device("mps"), dtype=torch.int64).equal(torch.BoolTensor([True,False]).to(torch.device("mps")).cumsum(0)) torch.cumsum = lambda input, *args, **kwargs: ( cumsum_fix(input, orig_cumsum, *args, **kwargs) ) torch.Tensor.cumsum = lambda self, *args, **kwargs: ( cumsum_fix(self, orig_Tensor_cumsum, *args, **kwargs) ) + orig_narrow = torch.narrow + torch.narrow = lambda *args, **kwargs: ( orig_narrow(*args, **kwargs).clone() ) + From 2217331cd1245d0bdda786a5dcaf4f7b843bd7e4 Mon Sep 17 00:00:00 2001 From: brkirch Date: Wed, 1 Feb 2023 06:20:19 -0500 Subject: [PATCH 33/54] Refactor MPS fixes to CondFunc --- modules/devices.py | 50 +++++++++++++--------------------------------- 1 file changed, 14 insertions(+), 36 deletions(-) diff --git a/modules/devices.py b/modules/devices.py index f4afb897..919048d0 100644 --- a/modules/devices.py +++ b/modules/devices.py @@ -2,6 +2,7 @@ import sys, os, shlex import contextlib import torch from modules import errors +from modules.sd_hijack_utils import CondFunc from packaging import version @@ -156,36 +157,7 @@ def test_for_nans(x, where): raise NansException(message) -# MPS workaround for https://github.com/pytorch/pytorch/issues/79383 -orig_tensor_to = torch.Tensor.to -def tensor_to_fix(self, *args, **kwargs): - if self.device.type != 'mps' and \ - ((len(args) > 0 and isinstance(args[0], torch.device) and args[0].type == 'mps') or \ - (isinstance(kwargs.get('device'), torch.device) and kwargs['device'].type == 'mps')): - self = self.contiguous() - return orig_tensor_to(self, *args, **kwargs) - - -# MPS workaround for https://github.com/pytorch/pytorch/issues/80800 -orig_layer_norm = torch.nn.functional.layer_norm -def layer_norm_fix(*args, **kwargs): - if len(args) > 0 and isinstance(args[0], torch.Tensor) and args[0].device.type == 'mps': - args = list(args) - args[0] = args[0].contiguous() - return orig_layer_norm(*args, **kwargs) - - -# MPS workaround for https://github.com/pytorch/pytorch/issues/90532 -orig_tensor_numpy = torch.Tensor.numpy -def numpy_fix(self, *args, **kwargs): - if self.requires_grad: - self = self.detach() - return orig_tensor_numpy(self, *args, **kwargs) - - # MPS workaround for https://github.com/pytorch/pytorch/issues/89784 -orig_cumsum = torch.cumsum -orig_Tensor_cumsum = torch.Tensor.cumsum def cumsum_fix(input, cumsum_func, *args, **kwargs): if input.device.type == 'mps': output_dtype = kwargs.get('dtype', input.dtype) @@ -199,14 +171,20 @@ def cumsum_fix(input, cumsum_func, *args, **kwargs): if has_mps(): if version.parse(torch.__version__) < version.parse("1.13"): # PyTorch 1.13 doesn't need these fixes but unfortunately is slower and has regressions that prevent training from working - torch.Tensor.to = tensor_to_fix - torch.nn.functional.layer_norm = layer_norm_fix - torch.Tensor.numpy = numpy_fix + + # MPS workaround for https://github.com/pytorch/pytorch/issues/79383 + CondFunc('torch.Tensor.to', lambda orig_func, self, *args, **kwargs: orig_func(self.contiguous(), *args, **kwargs), + lambda _, self, *args, **kwargs: self.device.type != 'mps' and (args and isinstance(args[0], torch.device) and args[0].type == 'mps' or isinstance(kwargs.get('device'), torch.device) and kwargs['device'].type == 'mps')) + # MPS workaround for https://github.com/pytorch/pytorch/issues/80800 + CondFunc('torch.nn.functional.layer_norm', lambda orig_func, *args, **kwargs: orig_func(*([args[0].contiguous()] + list(args[1:])), **kwargs), + lambda _, *args, **kwargs: args and isinstance(args[0], torch.Tensor) and args[0].device.type == 'mps') + # MPS workaround for https://github.com/pytorch/pytorch/issues/90532 + CondFunc('torch.Tensor.numpy', lambda orig_func, self, *args, **kwargs: orig_func(self.detach(), *args, **kwargs), lambda _, self, *args, **kwargs: self.requires_grad) elif version.parse(torch.__version__) > version.parse("1.13.1"): cumsum_needs_int_fix = not torch.Tensor([1,2]).to(torch.device("mps")).equal(torch.ShortTensor([1,1]).to(torch.device("mps")).cumsum(0)) cumsum_needs_bool_fix = not torch.BoolTensor([True,True]).to(device=torch.device("mps"), dtype=torch.int64).equal(torch.BoolTensor([True,False]).to(torch.device("mps")).cumsum(0)) - torch.cumsum = lambda input, *args, **kwargs: ( cumsum_fix(input, orig_cumsum, *args, **kwargs) ) - torch.Tensor.cumsum = lambda self, *args, **kwargs: ( cumsum_fix(self, orig_Tensor_cumsum, *args, **kwargs) ) - orig_narrow = torch.narrow - torch.narrow = lambda *args, **kwargs: ( orig_narrow(*args, **kwargs).clone() ) + cumsum_fix_func = lambda orig_func, input, *args, **kwargs: cumsum_fix(input, orig_func, *args, **kwargs) + CondFunc('torch.cumsum', cumsum_fix_func, None) + CondFunc('torch.Tensor.cumsum', cumsum_fix_func, None) + CondFunc('torch.narrow', lambda orig_func, *args, **kwargs: orig_func(*args, **kwargs).clone(), None) From 1b8af15f13cba2bfce249d9837660ea4f28d451e Mon Sep 17 00:00:00 2001 From: brkirch Date: Wed, 1 Feb 2023 09:28:16 -0500 Subject: [PATCH 34/54] Refactor Mac specific code to a separate file Move most Mac related code to a separate file, don't even load it unless web UI is run under macOS. --- modules/devices.py | 52 +++++--------------------------- modules/mac_specific.py | 56 +++++++++++++++++++++++++++++++++++ modules/sd_samplers_common.py | 16 ---------- modules/shared.py | 3 ++ 4 files changed, 66 insertions(+), 61 deletions(-) create mode 100644 modules/mac_specific.py diff --git a/modules/devices.py b/modules/devices.py index 919048d0..52c3e7cd 100644 --- a/modules/devices.py +++ b/modules/devices.py @@ -1,22 +1,17 @@ -import sys, os, shlex +import sys import contextlib import torch from modules import errors -from modules.sd_hijack_utils import CondFunc -from packaging import version + +if sys.platform == "darwin": + from modules import mac_specific -# has_mps is only available in nightly pytorch (for now) and macOS 12.3+. -# check `getattr` and try it for compatibility def has_mps() -> bool: - if not getattr(torch, 'has_mps', False): + if sys.platform != "darwin": return False - try: - torch.zeros(1).to(torch.device("mps")) - return True - except Exception: - return False - + else: + return mac_specific.has_mps def extract_device_id(args, name): for x in range(len(args)): @@ -155,36 +150,3 @@ def test_for_nans(x, where): message += " Use --disable-nan-check commandline argument to disable this check." raise NansException(message) - - -# MPS workaround for https://github.com/pytorch/pytorch/issues/89784 -def cumsum_fix(input, cumsum_func, *args, **kwargs): - if input.device.type == 'mps': - output_dtype = kwargs.get('dtype', input.dtype) - if output_dtype == torch.int64: - return cumsum_func(input.cpu(), *args, **kwargs).to(input.device) - elif cumsum_needs_bool_fix and output_dtype == torch.bool or cumsum_needs_int_fix and (output_dtype == torch.int8 or output_dtype == torch.int16): - return cumsum_func(input.to(torch.int32), *args, **kwargs).to(torch.int64) - return cumsum_func(input, *args, **kwargs) - - -if has_mps(): - if version.parse(torch.__version__) < version.parse("1.13"): - # PyTorch 1.13 doesn't need these fixes but unfortunately is slower and has regressions that prevent training from working - - # MPS workaround for https://github.com/pytorch/pytorch/issues/79383 - CondFunc('torch.Tensor.to', lambda orig_func, self, *args, **kwargs: orig_func(self.contiguous(), *args, **kwargs), - lambda _, self, *args, **kwargs: self.device.type != 'mps' and (args and isinstance(args[0], torch.device) and args[0].type == 'mps' or isinstance(kwargs.get('device'), torch.device) and kwargs['device'].type == 'mps')) - # MPS workaround for https://github.com/pytorch/pytorch/issues/80800 - CondFunc('torch.nn.functional.layer_norm', lambda orig_func, *args, **kwargs: orig_func(*([args[0].contiguous()] + list(args[1:])), **kwargs), - lambda _, *args, **kwargs: args and isinstance(args[0], torch.Tensor) and args[0].device.type == 'mps') - # MPS workaround for https://github.com/pytorch/pytorch/issues/90532 - CondFunc('torch.Tensor.numpy', lambda orig_func, self, *args, **kwargs: orig_func(self.detach(), *args, **kwargs), lambda _, self, *args, **kwargs: self.requires_grad) - elif version.parse(torch.__version__) > version.parse("1.13.1"): - cumsum_needs_int_fix = not torch.Tensor([1,2]).to(torch.device("mps")).equal(torch.ShortTensor([1,1]).to(torch.device("mps")).cumsum(0)) - cumsum_needs_bool_fix = not torch.BoolTensor([True,True]).to(device=torch.device("mps"), dtype=torch.int64).equal(torch.BoolTensor([True,False]).to(torch.device("mps")).cumsum(0)) - cumsum_fix_func = lambda orig_func, input, *args, **kwargs: cumsum_fix(input, orig_func, *args, **kwargs) - CondFunc('torch.cumsum', cumsum_fix_func, None) - CondFunc('torch.Tensor.cumsum', cumsum_fix_func, None) - CondFunc('torch.narrow', lambda orig_func, *args, **kwargs: orig_func(*args, **kwargs).clone(), None) - diff --git a/modules/mac_specific.py b/modules/mac_specific.py new file mode 100644 index 00000000..e39d670e --- /dev/null +++ b/modules/mac_specific.py @@ -0,0 +1,56 @@ +import torch +from modules import paths +from modules.sd_hijack_utils import CondFunc +from packaging import version + + +device = None + + +# has_mps is only available in nightly pytorch (for now) and macOS 12.3+. +# check `getattr` and try it for compatibility +def check_for_mps() -> bool: + if not getattr(torch, 'has_mps', False): + return False + try: + torch.zeros(1).to(torch.device("mps")) + return True + except Exception: + return False +has_mps = check_for_mps() + + +# MPS workaround for https://github.com/pytorch/pytorch/issues/89784 +def cumsum_fix(input, cumsum_func, *args, **kwargs): + if input.device.type == 'mps': + output_dtype = kwargs.get('dtype', input.dtype) + if output_dtype == torch.int64: + return cumsum_func(input.cpu(), *args, **kwargs).to(input.device) + elif cumsum_needs_bool_fix and output_dtype == torch.bool or cumsum_needs_int_fix and (output_dtype == torch.int8 or output_dtype == torch.int16): + return cumsum_func(input.to(torch.int32), *args, **kwargs).to(torch.int64) + return cumsum_func(input, *args, **kwargs) + + +if has_mps: + # MPS fix for randn in torchsde + CondFunc('torchsde._brownian.brownian_interval._randn', lambda _, size, dtype, device, seed: torch.randn(size, dtype=dtype, device=torch.device("cpu"), generator=torch.Generator(torch.device("cpu")).manual_seed(int(seed))).to(device), lambda _, size, dtype, device, seed: device.type == 'mps') + + if version.parse(torch.__version__) < version.parse("1.13"): + # PyTorch 1.13 doesn't need these fixes but unfortunately is slower and has regressions that prevent training from working + + # MPS workaround for https://github.com/pytorch/pytorch/issues/79383 + CondFunc('torch.Tensor.to', lambda orig_func, self, *args, **kwargs: orig_func(self.contiguous(), *args, **kwargs), + lambda _, self, *args, **kwargs: self.device.type != 'mps' and (args and isinstance(args[0], torch.device) and args[0].type == 'mps' or isinstance(kwargs.get('device'), torch.device) and kwargs['device'].type == 'mps')) + # MPS workaround for https://github.com/pytorch/pytorch/issues/80800 + CondFunc('torch.nn.functional.layer_norm', lambda orig_func, *args, **kwargs: orig_func(*([args[0].contiguous()] + list(args[1:])), **kwargs), + lambda _, *args, **kwargs: args and isinstance(args[0], torch.Tensor) and args[0].device.type == 'mps') + # MPS workaround for https://github.com/pytorch/pytorch/issues/90532 + CondFunc('torch.Tensor.numpy', lambda orig_func, self, *args, **kwargs: orig_func(self.detach(), *args, **kwargs), lambda _, self, *args, **kwargs: self.requires_grad) + elif version.parse(torch.__version__) > version.parse("1.13.1"): + cumsum_needs_int_fix = not torch.Tensor([1,2]).to(torch.device("mps")).equal(torch.ShortTensor([1,1]).to(torch.device("mps")).cumsum(0)) + cumsum_needs_bool_fix = not torch.BoolTensor([True,True]).to(device=torch.device("mps"), dtype=torch.int64).equal(torch.BoolTensor([True,False]).to(torch.device("mps")).cumsum(0)) + cumsum_fix_func = lambda orig_func, input, *args, **kwargs: cumsum_fix(input, orig_func, *args, **kwargs) + CondFunc('torch.cumsum', cumsum_fix_func, None) + CondFunc('torch.Tensor.cumsum', cumsum_fix_func, None) + CondFunc('torch.narrow', lambda orig_func, *args, **kwargs: orig_func(*args, **kwargs).clone(), None) + diff --git a/modules/sd_samplers_common.py b/modules/sd_samplers_common.py index 3c03d442..a1aac7cf 100644 --- a/modules/sd_samplers_common.py +++ b/modules/sd_samplers_common.py @@ -2,7 +2,6 @@ from collections import namedtuple import numpy as np import torch from PIL import Image -import torchsde._brownian.brownian_interval from modules import devices, processing, images, sd_vae_approx from modules.shared import opts, state @@ -61,18 +60,3 @@ def store_latent(decoded): class InterruptedException(BaseException): pass - - -# MPS fix for randn in torchsde -# XXX move this to separate file for MPS -def torchsde_randn(size, dtype, device, seed): - if device.type == 'mps': - generator = torch.Generator(devices.cpu).manual_seed(int(seed)) - return torch.randn(size, dtype=dtype, device=devices.cpu, generator=generator).to(device) - else: - generator = torch.Generator(device).manual_seed(int(seed)) - return torch.randn(size, dtype=dtype, device=device, generator=generator) - - -torchsde._brownian.brownian_interval._randn = torchsde_randn - diff --git a/modules/shared.py b/modules/shared.py index 5600d480..59f12cd8 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -145,6 +145,9 @@ devices.device, devices.device_interrogate, devices.device_gfpgan, devices.devic (devices.cpu if any(y in cmd_opts.use_cpu for y in [x, 'all']) else devices.get_optimal_device() for x in ['sd', 'interrogate', 'gfpgan', 'esrgan', 'codeformer']) device = devices.device +if sys.platform == "darwin": + from modules import mac_specific + mac_specific.device = device weight_load_location = None if cmd_opts.lowram else "cpu" batch_cond_uncond = cmd_opts.always_batch_cond_uncond or not (cmd_opts.lowvram or cmd_opts.medvram) From 92bae77b88fd90743eebec69ca7af1ee1c6e40f2 Mon Sep 17 00:00:00 2001 From: ctwrs <> Date: Wed, 1 Feb 2023 21:58:09 +0100 Subject: [PATCH 35/54] Add .jpg to allowed thumb formats --- modules/ui_extra_networks.py | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/modules/ui_extra_networks.py b/modules/ui_extra_networks.py index 83367968..95b30f4a 100644 --- a/modules/ui_extra_networks.py +++ b/modules/ui_extra_networks.py @@ -29,8 +29,9 @@ def add_pages_to_demo(app): if not any([Path(x).resolve() in Path(filename).resolve().parents for x in allowed_dirs]): raise ValueError(f"File cannot be fetched: {filename}. Must be in one of directories registered by extra pages.") - if os.path.splitext(filename)[1].lower() != ".png": - raise ValueError(f"File cannot be fetched: {filename}. Only png.") + ext = os.path.splitext(filename)[1].lower() + if ext not in (".png", ".jpg"): + raise ValueError(f"File cannot be fetched: {filename}. Only png and jpg.") # would profit from returning 304 return FileResponse(filename, headers={"Accept-Ranges": "bytes"}) From fb97acef63ef50d1612566e47c5c0ba4823bd29f Mon Sep 17 00:00:00 2001 From: Cody Brownstein Date: Wed, 1 Feb 2023 14:46:13 -0800 Subject: [PATCH 36/54] Update error message WRT missing checkpoint file The Safetensors format is also supported. --- modules/sd_models.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/modules/sd_models.py b/modules/sd_models.py index 300387a9..45c8b0c2 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -158,7 +158,7 @@ def select_checkpoint(): print(f" - directory {model_path}", file=sys.stderr) if shared.cmd_opts.ckpt_dir is not None: print(f" - directory {os.path.abspath(shared.cmd_opts.ckpt_dir)}", file=sys.stderr) - print("Can't run without a checkpoint. Find and place a .ckpt file into any of those locations. The program will exit.", file=sys.stderr) + print("Can't run without a checkpoint. Find and place a .ckpt or .safetensors file into any of those locations. The program will exit.", file=sys.stderr) exit(1) checkpoint_info = next(iter(checkpoints_list.values())) From 269833067de1e7d0b6a6bd65724743d6b88a133f Mon Sep 17 00:00:00 2001 From: Kyle Date: Thu, 2 Feb 2023 09:37:01 -0500 Subject: [PATCH 37/54] instruct-pix2pix support --- modules/processing.py | 2 +- modules/sd_samplers_kdiffusion.py | 8 ++++---- 2 files changed, 5 insertions(+), 5 deletions(-) diff --git a/modules/processing.py b/modules/processing.py index e544c2e1..f299e04d 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -186,7 +186,7 @@ class StableDiffusionProcessing: return conditioning def edit_image_conditioning(self, source_image): - conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(source_image)) + conditioning_image = self.sd_model.encode_first_stage(source_image).mode() return conditioning_image diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index aa7f106b..31ee22d3 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -77,9 +77,9 @@ class CFGDenoiser(torch.nn.Module): batch_size = len(conds_list) repeats = [len(conds_list[i]) for i in range(batch_size)] - x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x]) - image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond]) - sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma]) + x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x] + [x]) + sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma] + [sigma]) + image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond] + [image_cond]) denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps) cfg_denoiser_callback(denoiser_params) @@ -88,7 +88,7 @@ class CFGDenoiser(torch.nn.Module): sigma_in = denoiser_params.sigma if tensor.shape[1] == uncond.shape[1]: - cond_in = torch.cat([tensor, uncond]) + cond_in = torch.cat([tensor, uncond, uncond]) if shared.batch_cond_uncond: x_out = self.inner_model(x_in, sigma_in, cond={"c_crossattn": [cond_in], "c_concat": [image_cond_in]}) From cf0cfefe910b0de18c4751ce8d8cf7a6053a39b0 Mon Sep 17 00:00:00 2001 From: Kyle Date: Thu, 2 Feb 2023 19:15:38 -0500 Subject: [PATCH 38/54] Revert "instruct-pix2pix support" This reverts commit 269833067de1e7d0b6a6bd65724743d6b88a133f. --- modules/processing.py | 2 +- modules/sd_samplers_kdiffusion.py | 8 ++++---- 2 files changed, 5 insertions(+), 5 deletions(-) diff --git a/modules/processing.py b/modules/processing.py index f299e04d..e544c2e1 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -186,7 +186,7 @@ class StableDiffusionProcessing: return conditioning def edit_image_conditioning(self, source_image): - conditioning_image = self.sd_model.encode_first_stage(source_image).mode() + conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(source_image)) return conditioning_image diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index 31ee22d3..aa7f106b 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -77,9 +77,9 @@ class CFGDenoiser(torch.nn.Module): batch_size = len(conds_list) repeats = [len(conds_list[i]) for i in range(batch_size)] - x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x] + [x]) - sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma] + [sigma]) - image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond] + [image_cond]) + x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x]) + image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond]) + sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma]) denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps) cfg_denoiser_callback(denoiser_params) @@ -88,7 +88,7 @@ class CFGDenoiser(torch.nn.Module): sigma_in = denoiser_params.sigma if tensor.shape[1] == uncond.shape[1]: - cond_in = torch.cat([tensor, uncond, uncond]) + cond_in = torch.cat([tensor, uncond]) if shared.batch_cond_uncond: x_out = self.inner_model(x_in, sigma_in, cond={"c_crossattn": [cond_in], "c_concat": [image_cond_in]}) From 3b2ad20ac1753cb664bd8954dd34f0c04d3678c2 Mon Sep 17 00:00:00 2001 From: Kyle Date: Thu, 2 Feb 2023 19:19:45 -0500 Subject: [PATCH 39/54] Processing only, no CFGDenoiser change Allows instruct-pix2pix --- modules/processing.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/modules/processing.py b/modules/processing.py index e544c2e1..f299e04d 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -186,7 +186,7 @@ class StableDiffusionProcessing: return conditioning def edit_image_conditioning(self, source_image): - conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(source_image)) + conditioning_image = self.sd_model.encode_first_stage(source_image).mode() return conditioning_image From 982295aee53dd4208fca1c13aa726f943806e790 Mon Sep 17 00:00:00 2001 From: Vladimir Repin <32306715+mezotaken@users.noreply.github.com> Date: Sat, 4 Feb 2023 01:50:38 +0300 Subject: [PATCH 40/54] Fix img2imgalt after samplers separation --- scripts/img2imgalt.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/scripts/img2imgalt.py b/scripts/img2imgalt.py index cbdfc6b3..2572443f 100644 --- a/scripts/img2imgalt.py +++ b/scripts/img2imgalt.py @@ -6,7 +6,7 @@ from tqdm import trange import modules.scripts as scripts import gradio as gr -from modules import processing, shared, sd_samplers, prompt_parser +from modules import processing, shared, sd_samplers, prompt_parser, sd_samplers_common from modules.processing import Processed from modules.shared import opts, cmd_opts, state @@ -50,7 +50,7 @@ def find_noise_for_image(p, cond, uncond, cfg_scale, steps): x = x + d * dt - sd_samplers.store_latent(x) + sd_samplers_common.store_latent(x) # This shouldn't be necessary, but solved some VRAM issues del x_in, sigma_in, cond_in, c_out, c_in, t, @@ -104,7 +104,7 @@ def find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg_scale, steps): dt = sigmas[i] - sigmas[i - 1] x = x + d * dt - sd_samplers.store_latent(x) + sd_samplers_common.store_latent(x) # This shouldn't be necessary, but solved some VRAM issues del x_in, sigma_in, cond_in, c_out, c_in, t, From 6c6c6636bb123d664999c888cda47a1f8bad635b Mon Sep 17 00:00:00 2001 From: Kyle Date: Fri, 3 Feb 2023 18:19:56 -0500 Subject: [PATCH 41/54] Image CFG Added (Full Implementation) Uses separate denoiser for edit (instruct-pix2pix) models No impact to txt2img or regular img2img "Image CFG Scale" will only apply to instruct-pix2pix models and metadata will only be added if using such model --- modules/img2img.py | 3 +- modules/processing.py | 4 +- modules/sd_samplers_kdiffusion.py | 101 ++++++++++++++++++++++++++++-- modules/ui.py | 3 + 4 files changed, 103 insertions(+), 8 deletions(-) diff --git a/modules/img2img.py b/modules/img2img.py index f813299c..bcc158dc 100644 --- a/modules/img2img.py +++ b/modules/img2img.py @@ -76,7 +76,7 @@ def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args): processed_image.save(os.path.join(output_dir, filename)) -def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, steps: int, sampler_index: int, mask_blur: int, mask_alpha: float, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, *args): +def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, steps: int, sampler_index: int, mask_blur: int, mask_alpha: float, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, image_cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, *args): override_settings = create_override_settings_dict(override_settings_texts) is_batch = mode == 5 @@ -142,6 +142,7 @@ def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_s inpainting_fill=inpainting_fill, resize_mode=resize_mode, denoising_strength=denoising_strength, + image_cfg_scale=image_cfg_scale, inpaint_full_res=inpaint_full_res, inpaint_full_res_padding=inpaint_full_res_padding, inpainting_mask_invert=inpainting_mask_invert, diff --git a/modules/processing.py b/modules/processing.py index f299e04d..c33694cc 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -445,6 +445,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter "Steps": p.steps, "Sampler": p.sampler_name, "CFG scale": p.cfg_scale, + "Image CFG scale": getattr(p, 'image_cfg_scale', None), "Seed": all_seeds[index], "Face restoration": (opts.face_restoration_model if p.restore_faces else None), "Size": f"{p.width}x{p.height}", @@ -901,12 +902,13 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): sampler = None - def __init__(self, init_images: list = None, resize_mode: int = 0, denoising_strength: float = 0.75, mask: Any = None, mask_blur: int = 4, inpainting_fill: int = 0, inpaint_full_res: bool = True, inpaint_full_res_padding: int = 0, inpainting_mask_invert: int = 0, initial_noise_multiplier: float = None, **kwargs): + def __init__(self, init_images: list = None, resize_mode: int = 0, denoising_strength: float = 0.75, image_cfg_scale: float = None, mask: Any = None, mask_blur: int = 4, inpainting_fill: int = 0, inpaint_full_res: bool = True, inpaint_full_res_padding: int = 0, inpainting_mask_invert: int = 0, initial_noise_multiplier: float = None, **kwargs): super().__init__(**kwargs) self.init_images = init_images self.resize_mode: int = resize_mode self.denoising_strength: float = denoising_strength + self.image_cfg_scale: float = image_cfg_scale if shared.sd_model.cond_stage_key == "edit" else None self.init_latent = None self.image_mask = mask self.latent_mask = None diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index aa7f106b..a16ba69b 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -1,6 +1,7 @@ from collections import deque import torch import inspect +import einops import k_diffusion.sampling from modules import prompt_parser, devices, sd_samplers_common @@ -40,6 +41,90 @@ sampler_extra_params = { 'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'], } +class CFGDenoiserEdit(torch.nn.Module): + """ + Classifier free guidance denoiser. A wrapper for stable diffusion model (specifically for unet) + that can take a noisy picture and produce a noise-free picture using two guidances (prompts) + instead of one. Originally, the second prompt is just an empty string, but we use non-empty + negative prompt. + """ + + def __init__(self, model): + super().__init__() + self.inner_model = model + self.mask = None + self.nmask = None + self.init_latent = None + self.step = 0 + + def combine_denoised(self, x_out, conds_list, uncond, cond_scale, image_cfg_scale): + denoised_uncond = x_out[-uncond.shape[0]:] + denoised = torch.clone(denoised_uncond) + + for i, conds in enumerate(conds_list): + for cond_index, weight in conds: + out_cond, out_img_cond, out_uncond = x_out.chunk(3) + denoised[i] = out_uncond[cond_index] + cond_scale * (out_cond[cond_index] - out_img_cond[cond_index]) + image_cfg_scale * (out_img_cond[cond_index] - out_uncond[cond_index]) + + return denoised + + def forward(self, x, sigma, uncond, cond, cond_scale, image_cond, image_cfg_scale): + if state.interrupted or state.skipped: + raise sd_samplers_common.InterruptedException + + conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step) + uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step) + + batch_size = len(conds_list) + repeats = [len(conds_list[i]) for i in range(batch_size)] + + x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x] + [x]) + sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma] + [sigma]) + image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond] + [torch.zeros_like(self.init_latent)]) + + denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps) + cfg_denoiser_callback(denoiser_params) + x_in = denoiser_params.x + image_cond_in = denoiser_params.image_cond + sigma_in = denoiser_params.sigma + + if tensor.shape[1] == uncond.shape[1]: + cond_in = torch.cat([tensor, uncond, uncond]) + + if shared.batch_cond_uncond: + x_out = self.inner_model(x_in, sigma_in, cond={"c_crossattn": [cond_in], "c_concat": [image_cond_in]}) + else: + x_out = torch.zeros_like(x_in) + for batch_offset in range(0, x_out.shape[0], batch_size): + a = batch_offset + b = a + batch_size + x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": [cond_in[a:b]], "c_concat": [image_cond_in[a:b]]}) + else: + x_out = torch.zeros_like(x_in) + batch_size = batch_size*2 if shared.batch_cond_uncond else batch_size + for batch_offset in range(0, tensor.shape[0], batch_size): + a = batch_offset + b = min(a + batch_size, tensor.shape[0]) + x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": torch.cat([tensor[a:b]], uncond) , "c_concat": [image_cond_in[a:b]]}) + + x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond={"c_crossattn": [uncond], "c_concat": [image_cond_in[-uncond.shape[0]:]]}) + + devices.test_for_nans(x_out, "unet") + + if opts.live_preview_content == "Prompt": + sd_samplers_common.store_latent(x_out[0:uncond.shape[0]]) + elif opts.live_preview_content == "Negative prompt": + sd_samplers_common.store_latent(x_out[-uncond.shape[0]:]) + + denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale, image_cfg_scale) + + if self.mask is not None: + denoised = self.init_latent * self.mask + self.nmask * denoised + + self.step += 1 + + return denoised + class CFGDenoiser(torch.nn.Module): """ @@ -78,8 +163,8 @@ class CFGDenoiser(torch.nn.Module): repeats = [len(conds_list[i]) for i in range(batch_size)] x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x]) - image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond]) sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma]) + image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond]) denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps) cfg_denoiser_callback(denoiser_params) @@ -160,7 +245,7 @@ class KDiffusionSampler: self.funcname = funcname self.func = getattr(k_diffusion.sampling, self.funcname) self.extra_params = sampler_extra_params.get(funcname, []) - self.model_wrap_cfg = CFGDenoiser(self.model_wrap) + self.model_wrap_cfg = CFGDenoiser(self.model_wrap) if not shared.sd_model.cond_stage_key == "edit" else CFGDenoiserEdit(self.model_wrap) self.sampler_noises = None self.stop_at = None self.eta = None @@ -260,13 +345,17 @@ class KDiffusionSampler: self.model_wrap_cfg.init_latent = x self.last_latent = x - - samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args={ + extra_args={ 'cond': conditioning, 'image_cond': image_conditioning, 'uncond': unconditional_conditioning, - 'cond_scale': p.cfg_scale - }, disable=False, callback=self.callback_state, **extra_params_kwargs)) + 'cond_scale': p.cfg_scale, + } + + if p.image_cfg_scale: + extra_args['image_cfg_scale'] = p.image_cfg_scale + + samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs)) return samples diff --git a/modules/ui.py b/modules/ui.py index 5e34fb07..f2f7de8b 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -766,6 +766,7 @@ def create_ui(): elif category == "cfg": with FormGroup(): cfg_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='CFG Scale', value=7.0, elem_id="img2img_cfg_scale") + image_cfg_scale = gr.Slider(minimum=0, maximum=3.0, step=0.05, label='Image CFG Scale (for instruct-pix2pix models only)', value=1.5, elem_id="img2img_image_cfg_scale") denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.75, elem_id="img2img_denoising_strength") elif category == "seed": @@ -861,6 +862,7 @@ def create_ui(): batch_count, batch_size, cfg_scale, + image_cfg_scale, denoising_strength, seed, subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox, @@ -947,6 +949,7 @@ def create_ui(): (sampler_index, "Sampler"), (restore_faces, "Face restoration"), (cfg_scale, "CFG scale"), + (image_cfg_scale, "Image CFG scale"), (seed, "Seed"), (width, "Size-1"), (height, "Size-2"), From c27c0de0f73c5f533acfa10426dbac7ac988bc85 Mon Sep 17 00:00:00 2001 From: Kyle Date: Fri, 3 Feb 2023 19:15:32 -0500 Subject: [PATCH 42/54] txt2img Hires Fix --- modules/processing.py | 1 + modules/sd_samplers_kdiffusion.py | 2 +- 2 files changed, 2 insertions(+), 1 deletion(-) diff --git a/modules/processing.py b/modules/processing.py index c33694cc..e1b53ac0 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -268,6 +268,7 @@ class Processed: self.height = p.height self.sampler_name = p.sampler_name self.cfg_scale = p.cfg_scale + self.image_cfg_scale = getattr(p, 'image_cfg_scale', None) self.steps = p.steps self.batch_size = p.batch_size self.restore_faces = p.restore_faces diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index a16ba69b..6107e99e 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -352,7 +352,7 @@ class KDiffusionSampler: 'cond_scale': p.cfg_scale, } - if p.image_cfg_scale: + if hasattr(p, 'image_cfg_scale'): extra_args['image_cfg_scale'] = p.image_cfg_scale samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs)) From ba6a4e7e9431d02ba3656c6ae44d5dfe29908d68 Mon Sep 17 00:00:00 2001 From: Kyle Date: Fri, 3 Feb 2023 19:46:13 -0500 Subject: [PATCH 43/54] Use original CFGDenoiser if image_cfg_scale = 1 If image_cfg_scale is =1 then the original image is not used for the output. We can then use the original CFGDenoiser to get the same result to support AND functionality. Maybe in the future AND can be supported with "Image CFG Scale" --- modules/sd_samplers_kdiffusion.py | 7 +++++-- 1 file changed, 5 insertions(+), 2 deletions(-) diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index 6107e99e..6c57fdec 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -245,7 +245,7 @@ class KDiffusionSampler: self.funcname = funcname self.func = getattr(k_diffusion.sampling, self.funcname) self.extra_params = sampler_extra_params.get(funcname, []) - self.model_wrap_cfg = CFGDenoiser(self.model_wrap) if not shared.sd_model.cond_stage_key == "edit" else CFGDenoiserEdit(self.model_wrap) + self.model_wrap_cfg = CFGDenoiser(self.model_wrap) self.sampler_noises = None self.stop_at = None self.eta = None @@ -280,6 +280,9 @@ class KDiffusionSampler: return p.steps def initialize(self, p): + if shared.sd_model.cond_stage_key == "edit" and getattr(p, 'image_cfg_scale', None) != 1: + self.model_wrap_cfg = CFGDenoiserEdit(self.model_wrap) + self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None self.model_wrap_cfg.step = 0 @@ -352,7 +355,7 @@ class KDiffusionSampler: 'cond_scale': p.cfg_scale, } - if hasattr(p, 'image_cfg_scale'): + if hasattr(p, 'image_cfg_scale') and p.image_cfg_scale != 1 and p.image_cfg_scale != None: extra_args['image_cfg_scale'] = p.image_cfg_scale samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs)) From 4306659c4dab1a2ae611ac2a7487b87e1c513adf Mon Sep 17 00:00:00 2001 From: brkirch Date: Sat, 4 Feb 2023 01:22:06 -0500 Subject: [PATCH 44/54] Remove unused code --- modules/mac_specific.py | 3 --- modules/shared.py | 3 --- 2 files changed, 6 deletions(-) diff --git a/modules/mac_specific.py b/modules/mac_specific.py index e39d670e..ddcea53b 100644 --- a/modules/mac_specific.py +++ b/modules/mac_specific.py @@ -4,9 +4,6 @@ from modules.sd_hijack_utils import CondFunc from packaging import version -device = None - - # has_mps is only available in nightly pytorch (for now) and macOS 12.3+. # check `getattr` and try it for compatibility def check_for_mps() -> bool: diff --git a/modules/shared.py b/modules/shared.py index 59f12cd8..5600d480 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -145,9 +145,6 @@ devices.device, devices.device_interrogate, devices.device_gfpgan, devices.devic (devices.cpu if any(y in cmd_opts.use_cpu for y in [x, 'all']) else devices.get_optimal_device() for x in ['sd', 'interrogate', 'gfpgan', 'esrgan', 'codeformer']) device = devices.device -if sys.platform == "darwin": - from modules import mac_specific - mac_specific.device = device weight_load_location = None if cmd_opts.lowram else "cpu" batch_cond_uncond = cmd_opts.always_batch_cond_uncond or not (cmd_opts.lowvram or cmd_opts.medvram) From 72dd5785d9721b95e8d61210a56be8f6c6b1e97d Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 4 Feb 2023 11:06:17 +0300 Subject: [PATCH 45/54] merge CFGDenoiserEdit and CFGDenoiser into single object --- modules/sd_samplers_kdiffusion.py | 133 +++++++++--------------------- 1 file changed, 37 insertions(+), 96 deletions(-) diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index 6c57fdec..f076fc55 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -41,90 +41,6 @@ sampler_extra_params = { 'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'], } -class CFGDenoiserEdit(torch.nn.Module): - """ - Classifier free guidance denoiser. A wrapper for stable diffusion model (specifically for unet) - that can take a noisy picture and produce a noise-free picture using two guidances (prompts) - instead of one. Originally, the second prompt is just an empty string, but we use non-empty - negative prompt. - """ - - def __init__(self, model): - super().__init__() - self.inner_model = model - self.mask = None - self.nmask = None - self.init_latent = None - self.step = 0 - - def combine_denoised(self, x_out, conds_list, uncond, cond_scale, image_cfg_scale): - denoised_uncond = x_out[-uncond.shape[0]:] - denoised = torch.clone(denoised_uncond) - - for i, conds in enumerate(conds_list): - for cond_index, weight in conds: - out_cond, out_img_cond, out_uncond = x_out.chunk(3) - denoised[i] = out_uncond[cond_index] + cond_scale * (out_cond[cond_index] - out_img_cond[cond_index]) + image_cfg_scale * (out_img_cond[cond_index] - out_uncond[cond_index]) - - return denoised - - def forward(self, x, sigma, uncond, cond, cond_scale, image_cond, image_cfg_scale): - if state.interrupted or state.skipped: - raise sd_samplers_common.InterruptedException - - conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step) - uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step) - - batch_size = len(conds_list) - repeats = [len(conds_list[i]) for i in range(batch_size)] - - x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x] + [x]) - sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma] + [sigma]) - image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond] + [torch.zeros_like(self.init_latent)]) - - denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps) - cfg_denoiser_callback(denoiser_params) - x_in = denoiser_params.x - image_cond_in = denoiser_params.image_cond - sigma_in = denoiser_params.sigma - - if tensor.shape[1] == uncond.shape[1]: - cond_in = torch.cat([tensor, uncond, uncond]) - - if shared.batch_cond_uncond: - x_out = self.inner_model(x_in, sigma_in, cond={"c_crossattn": [cond_in], "c_concat": [image_cond_in]}) - else: - x_out = torch.zeros_like(x_in) - for batch_offset in range(0, x_out.shape[0], batch_size): - a = batch_offset - b = a + batch_size - x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": [cond_in[a:b]], "c_concat": [image_cond_in[a:b]]}) - else: - x_out = torch.zeros_like(x_in) - batch_size = batch_size*2 if shared.batch_cond_uncond else batch_size - for batch_offset in range(0, tensor.shape[0], batch_size): - a = batch_offset - b = min(a + batch_size, tensor.shape[0]) - x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": torch.cat([tensor[a:b]], uncond) , "c_concat": [image_cond_in[a:b]]}) - - x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond={"c_crossattn": [uncond], "c_concat": [image_cond_in[-uncond.shape[0]:]]}) - - devices.test_for_nans(x_out, "unet") - - if opts.live_preview_content == "Prompt": - sd_samplers_common.store_latent(x_out[0:uncond.shape[0]]) - elif opts.live_preview_content == "Negative prompt": - sd_samplers_common.store_latent(x_out[-uncond.shape[0]:]) - - denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale, image_cfg_scale) - - if self.mask is not None: - denoised = self.init_latent * self.mask + self.nmask * denoised - - self.step += 1 - - return denoised - class CFGDenoiser(torch.nn.Module): """ @@ -141,6 +57,7 @@ class CFGDenoiser(torch.nn.Module): self.nmask = None self.init_latent = None self.step = 0 + self.image_cfg_scale = None def combine_denoised(self, x_out, conds_list, uncond, cond_scale): denoised_uncond = x_out[-uncond.shape[0]:] @@ -152,19 +69,36 @@ class CFGDenoiser(torch.nn.Module): return denoised + def combine_denoised_for_edit_model(self, x_out, cond_scale): + out_cond, out_img_cond, out_uncond = x_out.chunk(3) + denoised = out_uncond + cond_scale * (out_cond - out_img_cond) + self.image_cfg_scale * (out_img_cond - out_uncond) + + return denoised + def forward(self, x, sigma, uncond, cond, cond_scale, image_cond): if state.interrupted or state.skipped: raise sd_samplers_common.InterruptedException + # at self.image_cfg_scale == 1.0 produced results for edit model are the same as with normal sampling, + # so is_edit_model is set to False to support AND composition. + is_edit_model = shared.sd_model.cond_stage_key == "edit" and self.image_cfg_scale is not None and self.image_cfg_scale != 1.0 + conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step) uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step) + assert not is_edit_model or all([len(conds) == 1 for conds in conds_list]), "AND is not supported for InstructPix2Pix checkpoint (unless using Image CFG scale = 1.0)" + batch_size = len(conds_list) repeats = [len(conds_list[i]) for i in range(batch_size)] - x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x]) - sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma]) - image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond]) + if not is_edit_model: + x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x]) + sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma]) + image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond]) + else: + x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x] + [x]) + sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma] + [sigma]) + image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond] + [torch.zeros_like(self.init_latent)]) denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps) cfg_denoiser_callback(denoiser_params) @@ -173,7 +107,10 @@ class CFGDenoiser(torch.nn.Module): sigma_in = denoiser_params.sigma if tensor.shape[1] == uncond.shape[1]: - cond_in = torch.cat([tensor, uncond]) + if not is_edit_model: + cond_in = torch.cat([tensor, uncond]) + else: + cond_in = torch.cat([tensor, uncond, uncond]) if shared.batch_cond_uncond: x_out = self.inner_model(x_in, sigma_in, cond={"c_crossattn": [cond_in], "c_concat": [image_cond_in]}) @@ -189,7 +126,13 @@ class CFGDenoiser(torch.nn.Module): for batch_offset in range(0, tensor.shape[0], batch_size): a = batch_offset b = min(a + batch_size, tensor.shape[0]) - x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": [tensor[a:b]], "c_concat": [image_cond_in[a:b]]}) + + if not is_edit_model: + c_crossattn = [tensor[a:b]] + else: + c_crossattn = torch.cat([tensor[a:b]], uncond) + + x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": c_crossattn, "c_concat": [image_cond_in[a:b]]}) x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond={"c_crossattn": [uncond], "c_concat": [image_cond_in[-uncond.shape[0]:]]}) @@ -200,7 +143,10 @@ class CFGDenoiser(torch.nn.Module): elif opts.live_preview_content == "Negative prompt": sd_samplers_common.store_latent(x_out[-uncond.shape[0]:]) - denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale) + if not is_edit_model: + denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale) + else: + denoised = self.combine_denoised_for_edit_model(x_out, cond_scale) if self.mask is not None: denoised = self.init_latent * self.mask + self.nmask * denoised @@ -280,12 +226,10 @@ class KDiffusionSampler: return p.steps def initialize(self, p): - if shared.sd_model.cond_stage_key == "edit" and getattr(p, 'image_cfg_scale', None) != 1: - self.model_wrap_cfg = CFGDenoiserEdit(self.model_wrap) - self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None self.model_wrap_cfg.step = 0 + self.model_wrap_cfg.image_cfg_scale = getattr(p, 'image_cfg_scale', None) self.eta = p.eta if p.eta is not None else opts.eta_ancestral k_diffusion.sampling.torch = TorchHijack(self.sampler_noises if self.sampler_noises is not None else []) @@ -355,9 +299,6 @@ class KDiffusionSampler: 'cond_scale': p.cfg_scale, } - if hasattr(p, 'image_cfg_scale') and p.image_cfg_scale != 1 and p.image_cfg_scale != None: - extra_args['image_cfg_scale'] = p.image_cfg_scale - samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs)) return samples From c4b9ed1a2791e411f95a96a6324b4986b8b85b84 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 4 Feb 2023 11:18:44 +0300 Subject: [PATCH 46/54] make Image CFG Scale only show if instrutpix2pix model is loaded --- modules/ui.py | 11 +++++++++-- 1 file changed, 9 insertions(+), 2 deletions(-) diff --git a/modules/ui.py b/modules/ui.py index f2f7de8b..f5df1ffe 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -765,8 +765,9 @@ def create_ui(): elif category == "cfg": with FormGroup(): - cfg_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='CFG Scale', value=7.0, elem_id="img2img_cfg_scale") - image_cfg_scale = gr.Slider(minimum=0, maximum=3.0, step=0.05, label='Image CFG Scale (for instruct-pix2pix models only)', value=1.5, elem_id="img2img_image_cfg_scale") + with FormRow(): + cfg_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='CFG Scale', value=7.0, elem_id="img2img_cfg_scale") + image_cfg_scale = gr.Slider(minimum=0, maximum=3.0, step=0.05, label='Image CFG Scale', value=1.5, elem_id="img2img_image_cfg_scale", visible=shared.sd_model and shared.sd_model.cond_stage_key == "edit") denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.75, elem_id="img2img_denoising_strength") elif category == "seed": @@ -1594,6 +1595,12 @@ def create_ui(): outputs=[component, text_settings], ) + text_settings.change( + fn=lambda: gr.update(visible=shared.sd_model and shared.sd_model.cond_stage_key == "edit"), + inputs=[], + outputs=[image_cfg_scale], + ) + button_set_checkpoint = gr.Button('Change checkpoint', elem_id='change_checkpoint', visible=False) button_set_checkpoint.click( fn=lambda value, _: run_settings_single(value, key='sd_model_checkpoint'), From 81823407d9b3c3daf2f9de59e0d75ef9a257f902 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 4 Feb 2023 11:38:56 +0300 Subject: [PATCH 47/54] add --no-hashing --- modules/hashes.py | 4 ++++ modules/hypernetworks/hypernetwork.py | 2 +- modules/sd_models.py | 3 +++ modules/shared.py | 2 +- 4 files changed, 9 insertions(+), 2 deletions(-) diff --git a/modules/hashes.py b/modules/hashes.py index 819362a3..83272a07 100644 --- a/modules/hashes.py +++ b/modules/hashes.py @@ -4,6 +4,7 @@ import os.path import filelock +from modules import shared from modules.paths import data_path @@ -68,6 +69,9 @@ def sha256(filename, title): if sha256_value is not None: return sha256_value + if shared.cmd_opts.no_hashing: + return None + print(f"Calculating sha256 for {filename}: ", end='') sha256_value = calculate_sha256(filename) print(f"{sha256_value}") diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 503534e2..825a93b2 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -307,7 +307,7 @@ class Hypernetwork: def shorthash(self): sha256 = hashes.sha256(self.filename, f'hypernet/{self.name}') - return sha256[0:10] + return sha256[0:10] if sha256 else None def list_hypernetworks(path): diff --git a/modules/sd_models.py b/modules/sd_models.py index 300387a9..6c6bb571 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -59,6 +59,9 @@ class CheckpointInfo: def calculate_shorthash(self): self.sha256 = hashes.sha256(self.filename, "checkpoint/" + self.name) + if self.sha256 is None: + return + self.shorthash = self.sha256[0:10] if self.shorthash not in self.ids: diff --git a/modules/shared.py b/modules/shared.py index 5600d480..79fbf724 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -106,7 +106,7 @@ parser.add_argument("--tls-certfile", type=str, help="Partially enables TLS, req parser.add_argument("--server-name", type=str, help="Sets hostname of server", default=None) parser.add_argument("--gradio-queue", action='store_true', help="Uses gradio queue; experimental option; breaks restart UI button") parser.add_argument("--skip-version-check", action='store_true', help="Do not check versions of torch and xformers") - +parser.add_argument("--no-hashing", action='store_true', help="disable sha256 hashing of checkpoints to help loading performance", default=False) script_loading.preload_extensions(extensions.extensions_dir, parser) From 40e51fd6efa9c09a82c5ab391dbbd2c806971582 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 4 Feb 2023 13:28:53 +0300 Subject: [PATCH 48/54] add margin parameter to draw_grid_annotations --- modules/images.py | 17 ++++++++++------- 1 file changed, 10 insertions(+), 7 deletions(-) diff --git a/modules/images.py b/modules/images.py index ae3cdaf4..4bdbd730 100644 --- a/modules/images.py +++ b/modules/images.py @@ -130,7 +130,7 @@ class GridAnnotation: self.size = None -def draw_grid_annotations(im, width, height, hor_texts, ver_texts): +def draw_grid_annotations(im, width, height, hor_texts, ver_texts, margin=0): def wrap(drawing, text, font, line_length): lines = [''] for word in text.split(): @@ -194,25 +194,28 @@ def draw_grid_annotations(im, width, height, hor_texts, ver_texts): line.allowed_width = allowed_width hor_text_heights = [sum([line.size[1] + line_spacing for line in lines]) - line_spacing for lines in hor_texts] - ver_text_heights = [sum([line.size[1] + line_spacing for line in lines]) - line_spacing * len(lines) for lines in - ver_texts] + ver_text_heights = [sum([line.size[1] + line_spacing for line in lines]) - line_spacing * len(lines) for lines in ver_texts] pad_top = 0 if sum(hor_text_heights) == 0 else max(hor_text_heights) + line_spacing * 2 - result = Image.new("RGB", (im.width + pad_left, im.height + pad_top), "white") - result.paste(im, (pad_left, pad_top)) + result = Image.new("RGB", (im.width + pad_left + margin * (rows-1), im.height + pad_top + margin * (cols-1)), "white") + + for row in range(rows): + for col in range(cols): + cell = im.crop((width * col, height * row, width * (col+1), height * (row+1))) + result.paste(cell, (pad_left + (width + margin) * col, pad_top + (height + margin) * row)) d = ImageDraw.Draw(result) for col in range(cols): - x = pad_left + width * col + width / 2 + x = pad_left + (width + margin) * col + width / 2 y = pad_top / 2 - hor_text_heights[col] / 2 draw_texts(d, x, y, hor_texts[col], fnt, fontsize) for row in range(rows): x = pad_left / 2 - y = pad_top + height * row + height / 2 - ver_text_heights[row] / 2 + y = pad_top + (height + margin) * row + height / 2 - ver_text_heights[row] / 2 draw_texts(d, x, y, ver_texts[row], fnt, fontsize) From 3e0f9a75438fa815429b5530261bcf7d80f3f101 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 4 Feb 2023 15:23:16 +0300 Subject: [PATCH 49/54] fix issue with switching back to checkpoint that had its checksum calculated during runtime mentioned in #7506 --- modules/sd_models.py | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/modules/sd_models.py b/modules/sd_models.py index 0e61d323..af1731e5 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -65,10 +65,11 @@ class CheckpointInfo: self.shorthash = self.sha256[0:10] if self.shorthash not in self.ids: - self.ids += [self.shorthash, self.sha256] - self.register() + self.ids += [self.shorthash, self.sha256, f'{self.name} [{self.shorthash}]'] + checkpoints_list.pop(self.title) self.title = f'{self.name} [{self.shorthash}]' + self.register() return self.shorthash From 6524478850ba1b285fee2593b113dfb726b0bd9f Mon Sep 17 00:00:00 2001 From: spezialspezial <75758219+spezialspezial@users.noreply.github.com> Date: Sat, 4 Feb 2023 16:52:15 +0100 Subject: [PATCH 50/54] Update modelloader.py os.path.getmtime(filename) throws exception later in codepath when meeting broken symlink. For now catch it here early but more checks could be added for robustness. --- modules/modelloader.py | 3 +++ 1 file changed, 3 insertions(+) diff --git a/modules/modelloader.py b/modules/modelloader.py index e9aa514e..fc3f6249 100644 --- a/modules/modelloader.py +++ b/modules/modelloader.py @@ -45,6 +45,9 @@ def load_models(model_path: str, model_url: str = None, command_path: str = None full_path = file if os.path.isdir(full_path): continue + if os.path.islink(full_path) and not os.path.exists(full_path): + print(f"Skipping broken symlink: {full_path}") + continue if ext_blacklist is not None and any([full_path.endswith(x) for x in ext_blacklist]): continue if len(ext_filter) != 0: From 88a46e8427fbaa73eb37c9eaabbb62b8647a5f32 Mon Sep 17 00:00:00 2001 From: "Alex \"mcmonkey\" Goodwin" Date: Sat, 4 Feb 2023 09:10:00 -0800 Subject: [PATCH 51/54] fix symlinks in extra networks ui 'absolute' and 'resolve' are equivalent, but 'resolve' resolves symlinks (which is an obscure specialty behavior usually not wanted) whereas 'absolute' treats symlinks as folders (which is the expected behavior). This commit allows you to symlink folders within your models/embeddings/etc. dirs and have preview images load as expected without issue. --- modules/ui_extra_networks.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/modules/ui_extra_networks.py b/modules/ui_extra_networks.py index 95b30f4a..90abec0a 100644 --- a/modules/ui_extra_networks.py +++ b/modules/ui_extra_networks.py @@ -26,7 +26,7 @@ def add_pages_to_demo(app): def fetch_file(filename: str = ""): from starlette.responses import FileResponse - if not any([Path(x).resolve() in Path(filename).resolve().parents for x in allowed_dirs]): + if not any([Path(x).absolute() in Path(filename).absolute().parents for x in allowed_dirs]): raise ValueError(f"File cannot be fetched: {filename}. Must be in one of directories registered by extra pages.") ext = os.path.splitext(filename)[1].lower() From 5a1b62e9f8048e20a9ff47df73b16f8a0b5e673c Mon Sep 17 00:00:00 2001 From: techneconn Date: Sun, 5 Feb 2023 15:48:51 +0900 Subject: [PATCH 52/54] Add prompt_hash option for file/dir name pattern --- javascript/hints.js | 4 ++-- modules/images.py | 2 ++ 2 files changed, 4 insertions(+), 2 deletions(-) diff --git a/javascript/hints.js b/javascript/hints.js index 75792d0d..9aa82f24 100644 --- a/javascript/hints.js +++ b/javascript/hints.js @@ -66,8 +66,8 @@ titles = { "Interrogate": "Reconstruct prompt from existing image and put it into the prompt field.", - "Images filename pattern": "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [model_name], [prompt_words], [date], [datetime], [datetime], [datetime