diff --git a/modules/processing.py b/modules/processing.py index 3a4ff224..6a99d383 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -188,7 +188,11 @@ def fix_seed(p): def process_images(p: StableDiffusionProcessing) -> Processed: """this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch""" - assert p.prompt is not None + if type(p.prompt) == list: + assert(len(p.prompt) > 0) + else: + assert p.prompt is not None + devices.torch_gc() fix_seed(p) @@ -265,6 +269,9 @@ def process_images(p: StableDiffusionProcessing) -> Processed: seeds = all_seeds[n * p.batch_size:(n + 1) * p.batch_size] subseeds = all_subseeds[n * p.batch_size:(n + 1) * p.batch_size] + if (len(prompts) == 0): + break + #uc = p.sd_model.get_learned_conditioning(len(prompts) * [p.negative_prompt]) #c = p.sd_model.get_learned_conditioning(prompts) uc = prompt_parser.get_learned_conditioning(len(prompts) * [p.negative_prompt], p.steps) diff --git a/scripts/prompts_from_file.py b/scripts/prompts_from_file.py index d9b01c81..513d9a1c 100644 --- a/scripts/prompts_from_file.py +++ b/scripts/prompts_from_file.py @@ -13,28 +13,42 @@ from modules.shared import opts, cmd_opts, state class Script(scripts.Script): def title(self): - return "Prompts from file" + return "Prompts from file or textbox" def ui(self, is_img2img): + # This checkbox would look nicer as two tabs, but there are two problems: + # 1) There is a bug in Gradio 3.3 that prevents visibility from working on Tabs + # 2) Even with Gradio 3.3.1, returning a control (like Tabs) that can't be used as input + # causes a AttributeError: 'Tabs' object has no attribute 'preprocess' assert, + # due to the way Script assumes all controls returned can be used as inputs. + # Therefore, there's no good way to use grouping components right now, + # so we will use a checkbox! :) + checkbox_txt = gr.Checkbox(label="Show Textbox", value=False) file = gr.File(label="File with inputs", type='bytes') + prompt_txt = gr.TextArea(label="Prompts") + checkbox_txt.change(fn=lambda x: [gr.File.update(visible = not x), gr.TextArea.update(visible = x)], inputs=[checkbox_txt], outputs=[file, prompt_txt]) + return [checkbox_txt, file, prompt_txt] - return [file] - - def run(self, p, data: bytes): - lines = [x.strip() for x in data.decode('utf8', errors='ignore').split("\n")] + def run(self, p, checkbox_txt, data: bytes, prompt_txt: str): + if (checkbox_txt): + lines = [x.strip() for x in prompt_txt.splitlines()] + else: + lines = [x.strip() for x in data.decode('utf8', errors='ignore').split("\n")] lines = [x for x in lines if len(x) > 0] - batch_count = math.ceil(len(lines) / p.batch_size) - print(f"Will process {len(lines) * p.n_iter} images in {batch_count * p.n_iter} batches.") + img_count = len(lines) * p.n_iter + batch_count = math.ceil(img_count / p.batch_size) + loop_count = math.ceil(batch_count / p.n_iter) + print(f"Will process {img_count} images in {batch_count} batches.") p.do_not_save_grid = True state.job_count = batch_count images = [] - for batch_no in range(batch_count): - state.job = f"{batch_no + 1} out of {batch_count * p.n_iter}" - p.prompt = lines[batch_no*p.batch_size:(batch_no+1)*p.batch_size] * p.n_iter + for loop_no in range(loop_count): + state.job = f"{loop_no + 1} out of {loop_count}" + p.prompt = lines[loop_no*p.batch_size:(loop_no+1)*p.batch_size] * p.n_iter proc = process_images(p) images += proc.images