This commit is contained in:
MalumaDev 2022-10-14 10:56:41 +02:00
parent fdecb63685
commit bb57f30c2d
9 changed files with 172 additions and 38 deletions

View File

@ -70,6 +70,7 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
- No token limit for prompts (original stable diffusion lets you use up to 75 tokens)
- DeepDanbooru integration, creates danbooru style tags for anime prompts (add --deepdanbooru to commandline args)
- [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add --xformers to commandline args)
- Aesthetic, a way to generate images with a specific aesthetic by using clip images embds (implementation of https://github.com/vicgalle/stable-diffusion-aesthetic-gradients)
## Installation and Running
Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.

View File

@ -316,11 +316,16 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration
return f"{all_prompts[index]}{negative_prompt_text}\n{generation_params_text}".strip()
def process_images(p: StableDiffusionProcessing) -> Processed:
def process_images(p: StableDiffusionProcessing, aesthetic_lr=0, aesthetic_weight=0, aesthetic_steps=0,
aesthetic_imgs=None,aesthetic_slerp=False) -> Processed:
"""this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
aesthetic_lr = float(aesthetic_lr)
aesthetic_weight = float(aesthetic_weight)
aesthetic_steps = int(aesthetic_steps)
if type(p.prompt) == list:
assert(len(p.prompt) > 0)
assert (len(p.prompt) > 0)
else:
assert p.prompt is not None
@ -394,7 +399,13 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
#uc = p.sd_model.get_learned_conditioning(len(prompts) * [p.negative_prompt])
#c = p.sd_model.get_learned_conditioning(prompts)
with devices.autocast():
uc = prompt_parser.get_learned_conditioning(shared.sd_model, len(prompts) * [p.negative_prompt], p.steps)
if hasattr(shared.sd_model.cond_stage_model, "set_aesthetic_params"):
shared.sd_model.cond_stage_model.set_aesthetic_params(0, 0, 0)
uc = prompt_parser.get_learned_conditioning(shared.sd_model, len(prompts) * [p.negative_prompt],
p.steps)
if hasattr(shared.sd_model.cond_stage_model, "set_aesthetic_params"):
shared.sd_model.cond_stage_model.set_aesthetic_params(aesthetic_lr, aesthetic_weight,
aesthetic_steps, aesthetic_imgs,aesthetic_slerp)
c = prompt_parser.get_multicond_learned_conditioning(shared.sd_model, prompts, p.steps)
if len(model_hijack.comments) > 0:

View File

@ -9,11 +9,14 @@ from torch.nn.functional import silu
import modules.textual_inversion.textual_inversion
from modules import prompt_parser, devices, sd_hijack_optimizations, shared
from modules.shared import opts, device, cmd_opts
from modules.shared import opts, device, cmd_opts, aesthetic_embeddings
from modules.sd_hijack_optimizations import invokeAI_mps_available
import ldm.modules.attention
import ldm.modules.diffusionmodules.model
from transformers import CLIPVisionModel, CLIPModel
import torch.optim as optim
import copy
attention_CrossAttention_forward = ldm.modules.attention.CrossAttention.forward
diffusionmodules_model_nonlinearity = ldm.modules.diffusionmodules.model.nonlinearity
@ -109,13 +112,29 @@ class StableDiffusionModelHijack:
_, remade_batch_tokens, _, _, _, token_count = self.clip.process_text([text])
return remade_batch_tokens[0], token_count, get_target_prompt_token_count(token_count)
def slerp(low, high, val):
low_norm = low/torch.norm(low, dim=1, keepdim=True)
high_norm = high/torch.norm(high, dim=1, keepdim=True)
omega = torch.acos((low_norm*high_norm).sum(1))
so = torch.sin(omega)
res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high
return res
class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
def __init__(self, wrapped, hijack):
super().__init__()
self.wrapped = wrapped
self.clipModel = CLIPModel.from_pretrained(
self.wrapped.transformer.name_or_path
)
del self.clipModel.vision_model
self.hijack: StableDiffusionModelHijack = hijack
self.tokenizer = wrapped.tokenizer
# self.vision = CLIPVisionModel.from_pretrained(self.wrapped.transformer.name_or_path).eval()
self.image_embs_name = None
self.image_embs = None
self.load_image_embs(None)
self.token_mults = {}
self.comma_token = [v for k, v in self.tokenizer.get_vocab().items() if k == ',</w>'][0]
@ -136,6 +155,23 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
if mult != 1.0:
self.token_mults[ident] = mult
def set_aesthetic_params(self, aesthetic_lr, aesthetic_weight, aesthetic_steps, image_embs_name=None,
aesthetic_slerp=True):
self.slerp = aesthetic_slerp
self.aesthetic_lr = aesthetic_lr
self.aesthetic_weight = aesthetic_weight
self.aesthetic_steps = aesthetic_steps
self.load_image_embs(image_embs_name)
def load_image_embs(self, image_embs_name):
if image_embs_name is None or len(image_embs_name) == 0:
image_embs_name = None
if image_embs_name is not None and self.image_embs_name != image_embs_name:
self.image_embs_name = image_embs_name
self.image_embs = torch.load(aesthetic_embeddings[self.image_embs_name], map_location=device)
self.image_embs /= self.image_embs.norm(dim=-1, keepdim=True)
self.image_embs.requires_grad_(False)
def tokenize_line(self, line, used_custom_terms, hijack_comments):
id_end = self.wrapped.tokenizer.eos_token_id
@ -333,7 +369,47 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
z1 = self.process_tokens(tokens, multipliers)
z = z1 if z is None else torch.cat((z, z1), axis=-2)
if len(text[
0]) != 0 and self.aesthetic_steps != 0 and self.aesthetic_lr != 0 and self.aesthetic_weight != 0 and self.image_embs_name != None:
if not opts.use_old_emphasis_implementation:
remade_batch_tokens = [
[self.wrapped.tokenizer.bos_token_id] + x[:75] + [self.wrapped.tokenizer.eos_token_id] for x in
remade_batch_tokens]
tokens = torch.asarray(remade_batch_tokens).to(device)
with torch.enable_grad():
model = copy.deepcopy(self.clipModel).to(device)
model.requires_grad_(True)
# We optimize the model to maximize the similarity
optimizer = optim.Adam(
model.text_model.parameters(), lr=self.aesthetic_lr
)
for i in range(self.aesthetic_steps):
text_embs = model.get_text_features(input_ids=tokens)
text_embs = text_embs / text_embs.norm(dim=-1, keepdim=True)
sim = text_embs @ self.image_embs.T
loss = -sim
optimizer.zero_grad()
loss.mean().backward()
optimizer.step()
zn = model.text_model(input_ids=tokens, output_hidden_states=-opts.CLIP_stop_at_last_layers)
if opts.CLIP_stop_at_last_layers > 1:
zn = zn.hidden_states[-opts.CLIP_stop_at_last_layers]
zn = model.text_model.final_layer_norm(zn)
else:
zn = zn.last_hidden_state
model.cpu()
del model
if self.slerp:
z = slerp(z, zn, self.aesthetic_weight)
else:
z = z * (1 - self.aesthetic_weight) + zn * self.aesthetic_weight
remade_batch_tokens = rem_tokens
batch_multipliers = rem_multipliers
i += 1

View File

@ -30,6 +30,8 @@ parser.add_argument("--no-half-vae", action='store_true', help="do not switch th
parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware acceleration in browser)")
parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI")
parser.add_argument("--embeddings-dir", type=str, default=os.path.join(script_path, 'embeddings'), help="embeddings directory for textual inversion (default: embeddings)")
parser.add_argument("--aesthetic_embeddings-dir", type=str, default=os.path.join(script_path, 'aesthetic_embeddings'),
help="aesthetic_embeddings directory(default: aesthetic_embeddings)")
parser.add_argument("--hypernetwork-dir", type=str, default=os.path.join(models_path, 'hypernetworks'), help="hypernetwork directory")
parser.add_argument("--allow-code", action='store_true', help="allow custom script execution from webui")
parser.add_argument("--medvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a little speed for low VRM usage")
@ -90,6 +92,9 @@ os.makedirs(cmd_opts.hypernetwork_dir, exist_ok=True)
hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
loaded_hypernetwork = None
aesthetic_embeddings = {f.replace(".pt",""): os.path.join(cmd_opts.aesthetic_embeddings_dir, f) for f in
os.listdir(cmd_opts.aesthetic_embeddings_dir) if f.endswith(".pt")}
def reload_hypernetworks():
global hypernetworks

View File

@ -48,7 +48,7 @@ class PersonalizedBase(Dataset):
print("Preparing dataset...")
for path in tqdm.tqdm(self.image_paths):
try:
image = Image.open(path).convert('RGB').resize((self.width, self.height), PIL.Image.BICUBIC)
image = Image.open(path).convert('RGB').resize((self.width, self.height), PIL.Image.Resampling.BICUBIC)
except Exception:
continue

View File

@ -172,7 +172,15 @@ def create_embedding(name, num_vectors_per_token, init_text='*'):
return fn
def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_image_prompt):
def batched(dataset, total, n=1):
for ndx in range(0, total, n):
yield [dataset.__getitem__(i) for i in range(ndx, min(ndx + n, total))]
def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps,
create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding,
preview_image_prompt, batch_size=1,
gradient_accumulation=1):
assert embedding_name, 'embedding not selected'
shared.state.textinfo = "Initializing textual inversion training..."
@ -204,7 +212,11 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
with torch.autocast("cuda"):
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file)
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width,
height=training_height,
repeats=shared.opts.training_image_repeats_per_epoch,
placeholder_token=embedding_name, model=shared.sd_model,
device=devices.device, template_file=template_file)
hijack = sd_hijack.model_hijack
@ -223,7 +235,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate)
pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step)
pbar = tqdm.tqdm(enumerate(batched(ds, steps - ititial_step, batch_size)), total=steps - ititial_step)
for i, entry in pbar:
embedding.step = i + ititial_step
@ -235,17 +247,20 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
break
with torch.autocast("cuda"):
c = cond_model([entry.cond_text])
c = cond_model([e.cond_text for e in entry])
x = torch.stack([e.latent for e in entry]).to(devices.device)
loss = shared.sd_model(x, c)[0]
x = entry.latent.to(devices.device)
loss = shared.sd_model(x.unsqueeze(0), c)[0]
del x
losses[embedding.step % losses.shape[0]] = loss.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
if ((i + 1) % gradient_accumulation == 0) or (i + 1 == steps - ititial_step):
optimizer.step()
optimizer.zero_grad()
epoch_num = embedding.step // len(ds)
epoch_step = embedding.step - (epoch_num * len(ds)) + 1
@ -259,7 +274,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
if embedding.step > 0 and images_dir is not None and embedding.step % create_image_every == 0:
last_saved_image = os.path.join(images_dir, f'{embedding_name}-{embedding.step}.png')
preview_text = entry.cond_text if preview_image_prompt == "" else preview_image_prompt
preview_text = entry[0].cond_text if preview_image_prompt == "" else preview_image_prompt
p = processing.StableDiffusionProcessingTxt2Img(
sd_model=shared.sd_model,
@ -305,7 +320,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
<p>
Loss: {losses.mean():.7f}<br/>
Step: {embedding.step}<br/>
Last prompt: {html.escape(entry.cond_text)}<br/>
Last prompt: {html.escape(entry[-1].cond_text)}<br/>
Last saved embedding: {html.escape(last_saved_file)}<br/>
Last saved image: {html.escape(last_saved_image)}<br/>
</p>

View File

@ -6,7 +6,14 @@ import modules.processing as processing
from modules.ui import plaintext_to_html
def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, scale_latent: bool, denoising_strength: float, *args):
def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, steps: int, sampler_index: int,
restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int,
subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool,
height: int, width: int, enable_hr: bool, scale_latent: bool, denoising_strength: float,
aesthetic_lr=0,
aesthetic_weight=0, aesthetic_steps=0,
aesthetic_imgs=None,
aesthetic_slerp=False, *args):
p = StableDiffusionProcessingTxt2Img(
sd_model=shared.sd_model,
outpath_samples=opts.outdir_samples or opts.outdir_txt2img_samples,
@ -40,7 +47,7 @@ def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2:
processed = modules.scripts.scripts_txt2img.run(p, *args)
if processed is None:
processed = process_images(p)
processed = process_images(p, aesthetic_lr, aesthetic_weight, aesthetic_steps, aesthetic_imgs, aesthetic_slerp)
shared.total_tqdm.clear()

View File

@ -24,7 +24,8 @@ import gradio.routes
from modules import sd_hijack
from modules.paths import script_path
from modules.shared import opts, cmd_opts
from modules.shared import opts, cmd_opts,aesthetic_embeddings
if cmd_opts.deepdanbooru:
from modules.deepbooru import get_deepbooru_tags
import modules.shared as shared
@ -534,6 +535,14 @@ def create_ui(wrap_gradio_gpu_call):
width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512)
height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512)
with gr.Group():
aesthetic_lr = gr.Textbox(label='Learning rate', placeholder="Learning rate", value="0.005")
aesthetic_weight = gr.Slider(minimum=0, maximum=1, step=0.01, label="Aesthetic weight", value=0.7)
aesthetic_steps = gr.Slider(minimum=0, maximum=50, step=1, label="Aesthetic steps", value=50)
aesthetic_imgs = gr.Dropdown(sorted(aesthetic_embeddings.keys()), label="Imgs embedding", value=sorted(aesthetic_embeddings.keys())[0] if len(aesthetic_embeddings) > 0 else None)
aesthetic_slerp = gr.Checkbox(label="Slerp interpolation", value=False)
with gr.Row():
restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1)
tiling = gr.Checkbox(label='Tiling', value=False)
@ -586,25 +595,30 @@ def create_ui(wrap_gradio_gpu_call):
fn=wrap_gradio_gpu_call(modules.txt2img.txt2img),
_js="submit",
inputs=[
txt2img_prompt,
txt2img_negative_prompt,
txt2img_prompt_style,
txt2img_prompt_style2,
steps,
sampler_index,
restore_faces,
tiling,
batch_count,
batch_size,
cfg_scale,
seed,
subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox,
height,
width,
enable_hr,
scale_latent,
denoising_strength,
] + custom_inputs,
txt2img_prompt,
txt2img_negative_prompt,
txt2img_prompt_style,
txt2img_prompt_style2,
steps,
sampler_index,
restore_faces,
tiling,
batch_count,
batch_size,
cfg_scale,
seed,
subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox,
height,
width,
enable_hr,
scale_latent,
denoising_strength,
aesthetic_lr,
aesthetic_weight,
aesthetic_steps,
aesthetic_imgs,
aesthetic_slerp
] + custom_inputs,
outputs=[
txt2img_gallery,
generation_info,
@ -1097,6 +1111,9 @@ def create_ui(wrap_gradio_gpu_call):
template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt"))
training_width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512)
training_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512)
batch_size = gr.Slider(minimum=1, maximum=64, step=1, label="Batch Size", value=4)
gradient_accumulation = gr.Slider(minimum=1, maximum=256, step=1, label="Gradient accumulation",
value=1)
steps = gr.Number(label='Max steps', value=100000, precision=0)
create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0)
save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0)
@ -1180,6 +1197,8 @@ def create_ui(wrap_gradio_gpu_call):
template_file,
save_image_with_stored_embedding,
preview_image_prompt,
batch_size,
gradient_accumulation
],
outputs=[
ti_output,