Fix memory leak and reduce memory usage

This commit is contained in:
Jairo Correa 2022-09-28 22:14:13 -03:00
parent 041d2aefc0
commit c938679de7
6 changed files with 42 additions and 16 deletions

View File

@ -89,7 +89,7 @@ def setup_codeformer():
output = self.net(cropped_face_t, w=w if w is not None else shared.opts.code_former_weight, adain=True)[0] output = self.net(cropped_face_t, w=w if w is not None else shared.opts.code_former_weight, adain=True)[0]
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1)) restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
del output del output
torch.cuda.empty_cache() devices.torch_gc()
except Exception as error: except Exception as error:
print(f'\tFailed inference for CodeFormer: {error}', file=sys.stderr) print(f'\tFailed inference for CodeFormer: {error}', file=sys.stderr)
restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1)) restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1))
@ -106,7 +106,9 @@ def setup_codeformer():
restored_img = cv2.resize(restored_img, (0, 0), fx=original_resolution[1]/restored_img.shape[1], fy=original_resolution[0]/restored_img.shape[0], interpolation=cv2.INTER_LINEAR) restored_img = cv2.resize(restored_img, (0, 0), fx=original_resolution[1]/restored_img.shape[1], fy=original_resolution[0]/restored_img.shape[0], interpolation=cv2.INTER_LINEAR)
if shared.opts.face_restoration_unload: if shared.opts.face_restoration_unload:
self.net.to(devices.cpu) self.net = None
self.face_helper = None
devices.torch_gc()
return restored_img return restored_img

View File

@ -1,4 +1,5 @@
import torch import torch
import gc
# has_mps is only available in nightly pytorch (for now), `getattr` for compatibility # has_mps is only available in nightly pytorch (for now), `getattr` for compatibility
from modules import errors from modules import errors
@ -17,8 +18,8 @@ def get_optimal_device():
return cpu return cpu
def torch_gc(): def torch_gc():
gc.collect()
if torch.cuda.is_available(): if torch.cuda.is_available():
torch.cuda.empty_cache() torch.cuda.empty_cache()
torch.cuda.ipc_collect() torch.cuda.ipc_collect()

View File

@ -98,6 +98,8 @@ def run_extras(extras_mode, image, image_folder, gfpgan_visibility, codeformer_v
outputs.append(image) outputs.append(image)
devices.torch_gc()
return outputs, plaintext_to_html(info), '' return outputs, plaintext_to_html(info), ''

View File

@ -49,6 +49,7 @@ def gfpgan():
def gfpgan_fix_faces(np_image): def gfpgan_fix_faces(np_image):
global loaded_gfpgan_model
model = gfpgan() model = gfpgan()
np_image_bgr = np_image[:, :, ::-1] np_image_bgr = np_image[:, :, ::-1]
@ -56,7 +57,9 @@ def gfpgan_fix_faces(np_image):
np_image = gfpgan_output_bgr[:, :, ::-1] np_image = gfpgan_output_bgr[:, :, ::-1]
if shared.opts.face_restoration_unload: if shared.opts.face_restoration_unload:
model.gfpgan.to(devices.cpu) del model
loaded_gfpgan_model = None
devices.torch_gc()
return np_image return np_image
@ -83,11 +86,7 @@ def setup_gfpgan():
return "GFPGAN" return "GFPGAN"
def restore(self, np_image): def restore(self, np_image):
np_image_bgr = np_image[:, :, ::-1] return gfpgan_fix_faces(np_image)
cropped_faces, restored_faces, gfpgan_output_bgr = gfpgan().enhance(np_image_bgr, has_aligned=False, only_center_face=False, paste_back=True)
np_image = gfpgan_output_bgr[:, :, ::-1]
return np_image
shared.face_restorers.append(FaceRestorerGFPGAN()) shared.face_restorers.append(FaceRestorerGFPGAN())
except Exception: except Exception:

View File

@ -12,7 +12,7 @@ import cv2
from skimage import exposure from skimage import exposure
import modules.sd_hijack import modules.sd_hijack
from modules import devices, prompt_parser, masking from modules import devices, prompt_parser, masking, lowvram
from modules.sd_hijack import model_hijack from modules.sd_hijack import model_hijack
from modules.sd_samplers import samplers, samplers_for_img2img from modules.sd_samplers import samplers, samplers_for_img2img
from modules.shared import opts, cmd_opts, state from modules.shared import opts, cmd_opts, state
@ -335,7 +335,8 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
if state.job_count == -1: if state.job_count == -1:
state.job_count = p.n_iter state.job_count = p.n_iter
for n in range(p.n_iter): for n in range(p.n_iter):
with torch.no_grad(), precision_scope("cuda"), ema_scope():
if state.interrupted: if state.interrupted:
break break
@ -368,22 +369,32 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
x_samples_ddim = p.sd_model.decode_first_stage(samples_ddim) x_samples_ddim = p.sd_model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
del samples_ddim
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
lowvram.send_everything_to_cpu()
devices.torch_gc()
if opts.filter_nsfw: if opts.filter_nsfw:
import modules.safety as safety import modules.safety as safety
x_samples_ddim = modules.safety.censor_batch(x_samples_ddim) x_samples_ddim = modules.safety.censor_batch(x_samples_ddim)
for i, x_sample in enumerate(x_samples_ddim): for i, x_sample in enumerate(x_samples_ddim):
with torch.no_grad(), precision_scope("cuda"), ema_scope():
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2) x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
x_sample = x_sample.astype(np.uint8) x_sample = x_sample.astype(np.uint8)
if p.restore_faces: if p.restore_faces:
with torch.no_grad(), precision_scope("cuda"), ema_scope():
if opts.save and not p.do_not_save_samples and opts.save_images_before_face_restoration: if opts.save and not p.do_not_save_samples and opts.save_images_before_face_restoration:
images.save_image(Image.fromarray(x_sample), p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-face-restoration") images.save_image(Image.fromarray(x_sample), p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-face-restoration")
devices.torch_gc()
x_sample = modules.face_restoration.restore_faces(x_sample) x_sample = modules.face_restoration.restore_faces(x_sample)
devices.torch_gc()
with torch.no_grad(), precision_scope("cuda"), ema_scope():
image = Image.fromarray(x_sample) image = Image.fromarray(x_sample)
if p.color_corrections is not None and i < len(p.color_corrections): if p.color_corrections is not None and i < len(p.color_corrections):
@ -411,8 +422,13 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
infotexts.append(infotext(n, i)) infotexts.append(infotext(n, i))
output_images.append(image) output_images.append(image)
state.nextjob() del x_samples_ddim
devices.torch_gc()
state.nextjob()
with torch.no_grad(), precision_scope("cuda"), ema_scope():
p.color_corrections = None p.color_corrections = None
index_of_first_image = 0 index_of_first_image = 0
@ -648,4 +664,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
if self.mask is not None: if self.mask is not None:
samples = samples * self.nmask + self.init_latent * self.mask samples = samples * self.nmask + self.init_latent * self.mask
del x
devices.torch_gc()
return samples return samples

View File

@ -22,7 +22,10 @@ import modules.txt2img
import modules.img2img import modules.img2img
import modules.swinir as swinir import modules.swinir as swinir
import modules.sd_models import modules.sd_models
from torch.nn.functional import silu
import ldm
ldm.modules.diffusionmodules.model.nonlinearity = silu
modules.codeformer_model.setup_codeformer() modules.codeformer_model.setup_codeformer()
modules.gfpgan_model.setup_gfpgan() modules.gfpgan_model.setup_gfpgan()