Settings to select VAE
This commit is contained in:
parent
17a2076f72
commit
cb31abcf58
|
@ -8,7 +8,7 @@ from omegaconf import OmegaConf
|
||||||
|
|
||||||
from ldm.util import instantiate_from_config
|
from ldm.util import instantiate_from_config
|
||||||
|
|
||||||
from modules import shared, modelloader, devices, script_callbacks
|
from modules import shared, modelloader, devices, script_callbacks, sd_vae
|
||||||
from modules.paths import models_path
|
from modules.paths import models_path
|
||||||
from modules.sd_hijack_inpainting import do_inpainting_hijack, should_hijack_inpainting
|
from modules.sd_hijack_inpainting import do_inpainting_hijack, should_hijack_inpainting
|
||||||
|
|
||||||
|
@ -160,12 +160,11 @@ def get_state_dict_from_checkpoint(pl_sd):
|
||||||
|
|
||||||
vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"}
|
vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"}
|
||||||
|
|
||||||
|
def load_model_weights(model, checkpoint_info, force=False):
|
||||||
def load_model_weights(model, checkpoint_info):
|
|
||||||
checkpoint_file = checkpoint_info.filename
|
checkpoint_file = checkpoint_info.filename
|
||||||
sd_model_hash = checkpoint_info.hash
|
sd_model_hash = checkpoint_info.hash
|
||||||
|
|
||||||
if checkpoint_info not in checkpoints_loaded:
|
if force or checkpoint_info not in checkpoints_loaded:
|
||||||
print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}")
|
print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}")
|
||||||
|
|
||||||
pl_sd = torch.load(checkpoint_file, map_location=shared.weight_load_location)
|
pl_sd = torch.load(checkpoint_file, map_location=shared.weight_load_location)
|
||||||
|
@ -186,17 +185,7 @@ def load_model_weights(model, checkpoint_info):
|
||||||
devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16
|
devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16
|
||||||
devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16
|
devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16
|
||||||
|
|
||||||
vae_file = os.path.splitext(checkpoint_file)[0] + ".vae.pt"
|
sd_vae.load_vae(model, checkpoint_file)
|
||||||
|
|
||||||
if not os.path.exists(vae_file) and shared.cmd_opts.vae_path is not None:
|
|
||||||
vae_file = shared.cmd_opts.vae_path
|
|
||||||
|
|
||||||
if os.path.exists(vae_file):
|
|
||||||
print(f"Loading VAE weights from: {vae_file}")
|
|
||||||
vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location)
|
|
||||||
vae_dict = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys}
|
|
||||||
model.first_stage_model.load_state_dict(vae_dict)
|
|
||||||
|
|
||||||
model.first_stage_model.to(devices.dtype_vae)
|
model.first_stage_model.to(devices.dtype_vae)
|
||||||
|
|
||||||
if shared.opts.sd_checkpoint_cache > 0:
|
if shared.opts.sd_checkpoint_cache > 0:
|
||||||
|
@ -213,7 +202,7 @@ def load_model_weights(model, checkpoint_info):
|
||||||
model.sd_checkpoint_info = checkpoint_info
|
model.sd_checkpoint_info = checkpoint_info
|
||||||
|
|
||||||
|
|
||||||
def load_model(checkpoint_info=None):
|
def load_model(checkpoint_info=None, force=False):
|
||||||
from modules import lowvram, sd_hijack
|
from modules import lowvram, sd_hijack
|
||||||
checkpoint_info = checkpoint_info or select_checkpoint()
|
checkpoint_info = checkpoint_info or select_checkpoint()
|
||||||
|
|
||||||
|
@ -234,7 +223,7 @@ def load_model(checkpoint_info=None):
|
||||||
|
|
||||||
do_inpainting_hijack()
|
do_inpainting_hijack()
|
||||||
sd_model = instantiate_from_config(sd_config.model)
|
sd_model = instantiate_from_config(sd_config.model)
|
||||||
load_model_weights(sd_model, checkpoint_info)
|
load_model_weights(sd_model, checkpoint_info, force=force)
|
||||||
|
|
||||||
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
|
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
|
||||||
lowvram.setup_for_low_vram(sd_model, shared.cmd_opts.medvram)
|
lowvram.setup_for_low_vram(sd_model, shared.cmd_opts.medvram)
|
||||||
|
@ -252,16 +241,16 @@ def load_model(checkpoint_info=None):
|
||||||
return sd_model
|
return sd_model
|
||||||
|
|
||||||
|
|
||||||
def reload_model_weights(sd_model, info=None):
|
def reload_model_weights(sd_model, info=None, force=False):
|
||||||
from modules import lowvram, devices, sd_hijack
|
from modules import lowvram, devices, sd_hijack
|
||||||
checkpoint_info = info or select_checkpoint()
|
checkpoint_info = info or select_checkpoint()
|
||||||
|
|
||||||
if sd_model.sd_model_checkpoint == checkpoint_info.filename:
|
if sd_model.sd_model_checkpoint == checkpoint_info.filename and not force:
|
||||||
return
|
return
|
||||||
|
|
||||||
if sd_model.sd_checkpoint_info.config != checkpoint_info.config or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info):
|
if sd_model.sd_checkpoint_info.config != checkpoint_info.config or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info):
|
||||||
checkpoints_loaded.clear()
|
checkpoints_loaded.clear()
|
||||||
load_model(checkpoint_info)
|
load_model(checkpoint_info, force=force)
|
||||||
return shared.sd_model
|
return shared.sd_model
|
||||||
|
|
||||||
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
|
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
|
||||||
|
@ -271,7 +260,7 @@ def reload_model_weights(sd_model, info=None):
|
||||||
|
|
||||||
sd_hijack.model_hijack.undo_hijack(sd_model)
|
sd_hijack.model_hijack.undo_hijack(sd_model)
|
||||||
|
|
||||||
load_model_weights(sd_model, checkpoint_info)
|
load_model_weights(sd_model, checkpoint_info, force=force)
|
||||||
|
|
||||||
sd_hijack.model_hijack.hijack(sd_model)
|
sd_hijack.model_hijack.hijack(sd_model)
|
||||||
script_callbacks.model_loaded_callback(sd_model)
|
script_callbacks.model_loaded_callback(sd_model)
|
||||||
|
|
121
modules/sd_vae.py
Normal file
121
modules/sd_vae.py
Normal file
|
@ -0,0 +1,121 @@
|
||||||
|
import torch
|
||||||
|
import os
|
||||||
|
from collections import namedtuple
|
||||||
|
from modules import shared, devices
|
||||||
|
from modules.paths import models_path
|
||||||
|
import glob
|
||||||
|
|
||||||
|
model_dir = "Stable-diffusion"
|
||||||
|
model_path = os.path.abspath(os.path.join(models_path, model_dir))
|
||||||
|
vae_dir = "VAE"
|
||||||
|
vae_path = os.path.abspath(os.path.join(models_path, vae_dir))
|
||||||
|
|
||||||
|
vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"}
|
||||||
|
default_vae_dict = {"auto": "auto", "None": "None"}
|
||||||
|
default_vae_list = ["auto", "None"]
|
||||||
|
default_vae_values = [default_vae_dict[x] for x in default_vae_list]
|
||||||
|
vae_dict = dict(default_vae_dict)
|
||||||
|
vae_list = list(default_vae_list)
|
||||||
|
first_load = True
|
||||||
|
|
||||||
|
def get_filename(filepath):
|
||||||
|
return os.path.splitext(os.path.basename(filepath))[0]
|
||||||
|
|
||||||
|
def refresh_vae_list(vae_path=vae_path, model_path=model_path):
|
||||||
|
global vae_dict, vae_list
|
||||||
|
res = {}
|
||||||
|
candidates = [
|
||||||
|
*glob.iglob(os.path.join(model_path, '**/*.vae.pt'), recursive=True),
|
||||||
|
*glob.iglob(os.path.join(model_path, '**/*.vae.ckpt'), recursive=True),
|
||||||
|
*glob.iglob(os.path.join(vae_path, '**/*.pt'), recursive=True),
|
||||||
|
*glob.iglob(os.path.join(vae_path, '**/*.ckpt'), recursive=True)
|
||||||
|
]
|
||||||
|
if shared.cmd_opts.vae_path is not None and os.path.isfile(shared.cmd_opts.vae_path):
|
||||||
|
candidates.append(shared.cmd_opts.vae_path)
|
||||||
|
for filepath in candidates:
|
||||||
|
name = get_filename(filepath)
|
||||||
|
res[name] = filepath
|
||||||
|
vae_list.clear()
|
||||||
|
vae_list.extend(default_vae_list)
|
||||||
|
vae_list.extend(list(res.keys()))
|
||||||
|
vae_dict.clear()
|
||||||
|
vae_dict.update(default_vae_dict)
|
||||||
|
vae_dict.update(res)
|
||||||
|
return vae_list
|
||||||
|
|
||||||
|
def load_vae(model, checkpoint_file, vae_file="auto"):
|
||||||
|
global first_load, vae_dict, vae_list
|
||||||
|
# save_settings = False
|
||||||
|
|
||||||
|
# if vae_file argument is provided, it takes priority
|
||||||
|
if vae_file and vae_file not in default_vae_list:
|
||||||
|
if not os.path.isfile(vae_file):
|
||||||
|
vae_file = "auto"
|
||||||
|
# save_settings = True
|
||||||
|
print("VAE provided as function argument doesn't exist")
|
||||||
|
# for the first load, if vae-path is provided, it takes priority and failure is reported
|
||||||
|
if first_load and shared.cmd_opts.vae_path is not None:
|
||||||
|
if os.path.isfile(shared.cmd_opts.vae_path):
|
||||||
|
vae_file = shared.cmd_opts.vae_path
|
||||||
|
# save_settings = True
|
||||||
|
# print("Using VAE provided as command line argument")
|
||||||
|
else:
|
||||||
|
print("VAE provided as command line argument doesn't exist")
|
||||||
|
# else, we load from settings
|
||||||
|
if vae_file == "auto" and shared.opts.sd_vae is not None:
|
||||||
|
# if saved VAE settings isn't recognized, fallback to auto
|
||||||
|
vae_file = vae_dict.get(shared.opts.sd_vae, "auto")
|
||||||
|
# if VAE selected but not found, fallback to auto
|
||||||
|
if vae_file not in default_vae_values and not os.path.isfile(vae_file):
|
||||||
|
vae_file = "auto"
|
||||||
|
print("Selected VAE doesn't exist")
|
||||||
|
# vae-path cmd arg takes priority for auto
|
||||||
|
if vae_file == "auto" and shared.cmd_opts.vae_path is not None:
|
||||||
|
if os.path.isfile(shared.cmd_opts.vae_path):
|
||||||
|
vae_file = shared.cmd_opts.vae_path
|
||||||
|
print("Using VAE provided as command line argument")
|
||||||
|
# if still not found, try look for ".vae.pt" beside model
|
||||||
|
model_path = os.path.splitext(checkpoint_file)[0]
|
||||||
|
if vae_file == "auto":
|
||||||
|
vae_file_try = model_path + ".vae.pt"
|
||||||
|
if os.path.isfile(vae_file_try):
|
||||||
|
vae_file = vae_file_try
|
||||||
|
print("Using VAE found beside selected model")
|
||||||
|
# if still not found, try look for ".vae.ckpt" beside model
|
||||||
|
if vae_file == "auto":
|
||||||
|
vae_file_try = model_path + ".vae.ckpt"
|
||||||
|
if os.path.isfile(vae_file_try):
|
||||||
|
vae_file = vae_file_try
|
||||||
|
print("Using VAE found beside selected model")
|
||||||
|
# No more fallbacks for auto
|
||||||
|
if vae_file == "auto":
|
||||||
|
vae_file = None
|
||||||
|
# Last check, just because
|
||||||
|
if vae_file and not os.path.exists(vae_file):
|
||||||
|
vae_file = None
|
||||||
|
|
||||||
|
if vae_file:
|
||||||
|
print(f"Loading VAE weights from: {vae_file}")
|
||||||
|
vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location)
|
||||||
|
vae_dict_1 = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys}
|
||||||
|
model.first_stage_model.load_state_dict(vae_dict_1)
|
||||||
|
|
||||||
|
# If vae used is not in dict, update it
|
||||||
|
# It will be removed on refresh though
|
||||||
|
if vae_file is not None:
|
||||||
|
vae_opt = get_filename(vae_file)
|
||||||
|
if vae_opt not in vae_dict:
|
||||||
|
vae_dict[vae_opt] = vae_file
|
||||||
|
vae_list.append(vae_opt)
|
||||||
|
|
||||||
|
"""
|
||||||
|
# Save current VAE to VAE settings, maybe? will it work?
|
||||||
|
if save_settings:
|
||||||
|
if vae_file is None:
|
||||||
|
vae_opt = "None"
|
||||||
|
|
||||||
|
# shared.opts.sd_vae = vae_opt
|
||||||
|
"""
|
||||||
|
|
||||||
|
first_load = False
|
||||||
|
model.first_stage_model.to(devices.dtype_vae)
|
|
@ -14,7 +14,7 @@ import modules.memmon
|
||||||
import modules.sd_models
|
import modules.sd_models
|
||||||
import modules.styles
|
import modules.styles
|
||||||
import modules.devices as devices
|
import modules.devices as devices
|
||||||
from modules import sd_samplers, sd_models, localization
|
from modules import sd_samplers, sd_models, localization, sd_vae
|
||||||
from modules.hypernetworks import hypernetwork
|
from modules.hypernetworks import hypernetwork
|
||||||
from modules.paths import models_path, script_path, sd_path
|
from modules.paths import models_path, script_path, sd_path
|
||||||
|
|
||||||
|
@ -295,6 +295,7 @@ options_templates.update(options_section(('training', "Training"), {
|
||||||
options_templates.update(options_section(('sd', "Stable Diffusion"), {
|
options_templates.update(options_section(('sd', "Stable Diffusion"), {
|
||||||
"sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, refresh=sd_models.list_models),
|
"sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, refresh=sd_models.list_models),
|
||||||
"sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
|
"sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
|
||||||
|
"sd_vae": OptionInfo("auto", "SD VAE", gr.Dropdown, lambda: {"choices": list(sd_vae.vae_list)}, refresh=sd_vae.refresh_vae_list),
|
||||||
"sd_hypernetwork": OptionInfo("None", "Hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks),
|
"sd_hypernetwork": OptionInfo("None", "Hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks),
|
||||||
"sd_hypernetwork_strength": OptionInfo(1.0, "Hypernetwork strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.001}),
|
"sd_hypernetwork_strength": OptionInfo(1.0, "Hypernetwork strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.001}),
|
||||||
"inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
"inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
||||||
|
@ -407,11 +408,12 @@ class Options:
|
||||||
if bad_settings > 0:
|
if bad_settings > 0:
|
||||||
print(f"The program is likely to not work with bad settings.\nSettings file: {filename}\nEither fix the file, or delete it and restart.", file=sys.stderr)
|
print(f"The program is likely to not work with bad settings.\nSettings file: {filename}\nEither fix the file, or delete it and restart.", file=sys.stderr)
|
||||||
|
|
||||||
def onchange(self, key, func):
|
def onchange(self, key, func, call=True):
|
||||||
item = self.data_labels.get(key)
|
item = self.data_labels.get(key)
|
||||||
item.onchange = func
|
item.onchange = func
|
||||||
|
|
||||||
func()
|
if call:
|
||||||
|
func()
|
||||||
|
|
||||||
def dumpjson(self):
|
def dumpjson(self):
|
||||||
d = {k: self.data.get(k, self.data_labels.get(k).default) for k in self.data_labels.keys()}
|
d = {k: self.data.get(k, self.data_labels.get(k).default) for k in self.data_labels.keys()}
|
||||||
|
|
5
webui.py
5
webui.py
|
@ -21,6 +21,7 @@ import modules.paths
|
||||||
import modules.scripts
|
import modules.scripts
|
||||||
import modules.sd_hijack
|
import modules.sd_hijack
|
||||||
import modules.sd_models
|
import modules.sd_models
|
||||||
|
import modules.sd_vae
|
||||||
import modules.shared as shared
|
import modules.shared as shared
|
||||||
import modules.txt2img
|
import modules.txt2img
|
||||||
|
|
||||||
|
@ -74,8 +75,12 @@ def initialize():
|
||||||
|
|
||||||
modules.scripts.load_scripts()
|
modules.scripts.load_scripts()
|
||||||
|
|
||||||
|
modules.sd_vae.refresh_vae_list()
|
||||||
modules.sd_models.load_model()
|
modules.sd_models.load_model()
|
||||||
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model)))
|
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model)))
|
||||||
|
# I don't know what needs to be done to only reload VAE, with all those hijacks callbacks, and lowvram,
|
||||||
|
# so for now this reloads the whole model too, and no cache
|
||||||
|
shared.opts.onchange("sd_vae", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model, force=True)), call=False)
|
||||||
shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)))
|
shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)))
|
||||||
shared.opts.onchange("sd_hypernetwork_strength", modules.hypernetworks.hypernetwork.apply_strength)
|
shared.opts.onchange("sd_hypernetwork_strength", modules.hypernetworks.hypernetwork.apply_strength)
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user