Merge pull request #2037 from AUTOMATIC1111/embed-embeddings-in-images
Add option to store TI embeddings in png chunks, and load from same.
This commit is contained in:
commit
cc5803603b
219
modules/textual_inversion/image_embedding.py
Normal file
219
modules/textual_inversion/image_embedding.py
Normal file
|
@ -0,0 +1,219 @@
|
|||
import base64
|
||||
import json
|
||||
import numpy as np
|
||||
import zlib
|
||||
from PIL import Image, PngImagePlugin, ImageDraw, ImageFont
|
||||
from fonts.ttf import Roboto
|
||||
import torch
|
||||
|
||||
|
||||
class EmbeddingEncoder(json.JSONEncoder):
|
||||
def default(self, obj):
|
||||
if isinstance(obj, torch.Tensor):
|
||||
return {'TORCHTENSOR': obj.cpu().detach().numpy().tolist()}
|
||||
return json.JSONEncoder.default(self, obj)
|
||||
|
||||
|
||||
class EmbeddingDecoder(json.JSONDecoder):
|
||||
def __init__(self, *args, **kwargs):
|
||||
json.JSONDecoder.__init__(self, object_hook=self.object_hook, *args, **kwargs)
|
||||
|
||||
def object_hook(self, d):
|
||||
if 'TORCHTENSOR' in d:
|
||||
return torch.from_numpy(np.array(d['TORCHTENSOR']))
|
||||
return d
|
||||
|
||||
|
||||
def embedding_to_b64(data):
|
||||
d = json.dumps(data, cls=EmbeddingEncoder)
|
||||
return base64.b64encode(d.encode())
|
||||
|
||||
|
||||
def embedding_from_b64(data):
|
||||
d = base64.b64decode(data)
|
||||
return json.loads(d, cls=EmbeddingDecoder)
|
||||
|
||||
|
||||
def lcg(m=2**32, a=1664525, c=1013904223, seed=0):
|
||||
while True:
|
||||
seed = (a * seed + c) % m
|
||||
yield seed % 255
|
||||
|
||||
|
||||
def xor_block(block):
|
||||
g = lcg()
|
||||
randblock = np.array([next(g) for _ in range(np.product(block.shape))]).astype(np.uint8).reshape(block.shape)
|
||||
return np.bitwise_xor(block.astype(np.uint8), randblock & 0x0F)
|
||||
|
||||
|
||||
def style_block(block, sequence):
|
||||
im = Image.new('RGB', (block.shape[1], block.shape[0]))
|
||||
draw = ImageDraw.Draw(im)
|
||||
i = 0
|
||||
for x in range(-6, im.size[0], 8):
|
||||
for yi, y in enumerate(range(-6, im.size[1], 8)):
|
||||
offset = 0
|
||||
if yi % 2 == 0:
|
||||
offset = 4
|
||||
shade = sequence[i % len(sequence)]
|
||||
i += 1
|
||||
draw.ellipse((x+offset, y, x+6+offset, y+6), fill=(shade, shade, shade))
|
||||
|
||||
fg = np.array(im).astype(np.uint8) & 0xF0
|
||||
|
||||
return block ^ fg
|
||||
|
||||
|
||||
def insert_image_data_embed(image, data):
|
||||
d = 3
|
||||
data_compressed = zlib.compress(json.dumps(data, cls=EmbeddingEncoder).encode(), level=9)
|
||||
data_np_ = np.frombuffer(data_compressed, np.uint8).copy()
|
||||
data_np_high = data_np_ >> 4
|
||||
data_np_low = data_np_ & 0x0F
|
||||
|
||||
h = image.size[1]
|
||||
next_size = data_np_low.shape[0] + (h-(data_np_low.shape[0] % h))
|
||||
next_size = next_size + ((h*d)-(next_size % (h*d)))
|
||||
|
||||
data_np_low.resize(next_size)
|
||||
data_np_low = data_np_low.reshape((h, -1, d))
|
||||
|
||||
data_np_high.resize(next_size)
|
||||
data_np_high = data_np_high.reshape((h, -1, d))
|
||||
|
||||
edge_style = list(data['string_to_param'].values())[0].cpu().detach().numpy().tolist()[0][:1024]
|
||||
edge_style = (np.abs(edge_style)/np.max(np.abs(edge_style))*255).astype(np.uint8)
|
||||
|
||||
data_np_low = style_block(data_np_low, sequence=edge_style)
|
||||
data_np_low = xor_block(data_np_low)
|
||||
data_np_high = style_block(data_np_high, sequence=edge_style[::-1])
|
||||
data_np_high = xor_block(data_np_high)
|
||||
|
||||
im_low = Image.fromarray(data_np_low, mode='RGB')
|
||||
im_high = Image.fromarray(data_np_high, mode='RGB')
|
||||
|
||||
background = Image.new('RGB', (image.size[0]+im_low.size[0]+im_high.size[0]+2, image.size[1]), (0, 0, 0))
|
||||
background.paste(im_low, (0, 0))
|
||||
background.paste(image, (im_low.size[0]+1, 0))
|
||||
background.paste(im_high, (im_low.size[0]+1+image.size[0]+1, 0))
|
||||
|
||||
return background
|
||||
|
||||
|
||||
def crop_black(img, tol=0):
|
||||
mask = (img > tol).all(2)
|
||||
mask0, mask1 = mask.any(0), mask.any(1)
|
||||
col_start, col_end = mask0.argmax(), mask.shape[1]-mask0[::-1].argmax()
|
||||
row_start, row_end = mask1.argmax(), mask.shape[0]-mask1[::-1].argmax()
|
||||
return img[row_start:row_end, col_start:col_end]
|
||||
|
||||
|
||||
def extract_image_data_embed(image):
|
||||
d = 3
|
||||
outarr = crop_black(np.array(image.convert('RGB').getdata()).reshape(image.size[1], image.size[0], d).astype(np.uint8)) & 0x0F
|
||||
black_cols = np.where(np.sum(outarr, axis=(0, 2)) == 0)
|
||||
if black_cols[0].shape[0] < 2:
|
||||
print('No Image data blocks found.')
|
||||
return None
|
||||
|
||||
data_block_lower = outarr[:, :black_cols[0].min(), :].astype(np.uint8)
|
||||
data_block_upper = outarr[:, black_cols[0].max()+1:, :].astype(np.uint8)
|
||||
|
||||
data_block_lower = xor_block(data_block_lower)
|
||||
data_block_upper = xor_block(data_block_upper)
|
||||
|
||||
data_block = (data_block_upper << 4) | (data_block_lower)
|
||||
data_block = data_block.flatten().tobytes()
|
||||
|
||||
data = zlib.decompress(data_block)
|
||||
return json.loads(data, cls=EmbeddingDecoder)
|
||||
|
||||
|
||||
def caption_image_overlay(srcimage, title, footerLeft, footerMid, footerRight, textfont=None):
|
||||
from math import cos
|
||||
|
||||
image = srcimage.copy()
|
||||
|
||||
if textfont is None:
|
||||
try:
|
||||
textfont = ImageFont.truetype(opts.font or Roboto, fontsize)
|
||||
textfont = opts.font or Roboto
|
||||
except Exception:
|
||||
textfont = Roboto
|
||||
|
||||
factor = 1.5
|
||||
gradient = Image.new('RGBA', (1, image.size[1]), color=(0, 0, 0, 0))
|
||||
for y in range(image.size[1]):
|
||||
mag = 1-cos(y/image.size[1]*factor)
|
||||
mag = max(mag, 1-cos((image.size[1]-y)/image.size[1]*factor*1.1))
|
||||
gradient.putpixel((0, y), (0, 0, 0, int(mag*255)))
|
||||
image = Image.alpha_composite(image.convert('RGBA'), gradient.resize(image.size))
|
||||
|
||||
draw = ImageDraw.Draw(image)
|
||||
fontsize = 32
|
||||
font = ImageFont.truetype(textfont, fontsize)
|
||||
padding = 10
|
||||
|
||||
_, _, w, h = draw.textbbox((0, 0), title, font=font)
|
||||
fontsize = min(int(fontsize * (((image.size[0]*0.75)-(padding*4))/w)), 72)
|
||||
font = ImageFont.truetype(textfont, fontsize)
|
||||
_, _, w, h = draw.textbbox((0, 0), title, font=font)
|
||||
draw.text((padding, padding), title, anchor='lt', font=font, fill=(255, 255, 255, 230))
|
||||
|
||||
_, _, w, h = draw.textbbox((0, 0), footerLeft, font=font)
|
||||
fontsize_left = min(int(fontsize * (((image.size[0]/3)-(padding))/w)), 72)
|
||||
_, _, w, h = draw.textbbox((0, 0), footerMid, font=font)
|
||||
fontsize_mid = min(int(fontsize * (((image.size[0]/3)-(padding))/w)), 72)
|
||||
_, _, w, h = draw.textbbox((0, 0), footerRight, font=font)
|
||||
fontsize_right = min(int(fontsize * (((image.size[0]/3)-(padding))/w)), 72)
|
||||
|
||||
font = ImageFont.truetype(textfont, min(fontsize_left, fontsize_mid, fontsize_right))
|
||||
|
||||
draw.text((padding, image.size[1]-padding), footerLeft, anchor='ls', font=font, fill=(255, 255, 255, 230))
|
||||
draw.text((image.size[0]/2, image.size[1]-padding), footerMid, anchor='ms', font=font, fill=(255, 255, 255, 230))
|
||||
draw.text((image.size[0]-padding, image.size[1]-padding), footerRight, anchor='rs', font=font, fill=(255, 255, 255, 230))
|
||||
|
||||
return image
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
testEmbed = Image.open('test_embedding.png')
|
||||
data = extract_image_data_embed(testEmbed)
|
||||
assert data is not None
|
||||
|
||||
data = embedding_from_b64(testEmbed.text['sd-ti-embedding'])
|
||||
assert data is not None
|
||||
|
||||
image = Image.new('RGBA', (512, 512), (255, 255, 200, 255))
|
||||
cap_image = caption_image_overlay(image, 'title', 'footerLeft', 'footerMid', 'footerRight')
|
||||
|
||||
test_embed = {'string_to_param': {'*': torch.from_numpy(np.random.random((2, 4096)))}}
|
||||
|
||||
embedded_image = insert_image_data_embed(cap_image, test_embed)
|
||||
|
||||
retrived_embed = extract_image_data_embed(embedded_image)
|
||||
|
||||
assert str(retrived_embed) == str(test_embed)
|
||||
|
||||
embedded_image2 = insert_image_data_embed(cap_image, retrived_embed)
|
||||
|
||||
assert embedded_image == embedded_image2
|
||||
|
||||
g = lcg()
|
||||
shared_random = np.array([next(g) for _ in range(100)]).astype(np.uint8).tolist()
|
||||
|
||||
reference_random = [253, 242, 127, 44, 157, 27, 239, 133, 38, 79, 167, 4, 177,
|
||||
95, 130, 79, 78, 14, 52, 215, 220, 194, 126, 28, 240, 179,
|
||||
160, 153, 149, 50, 105, 14, 21, 218, 199, 18, 54, 198, 193,
|
||||
38, 128, 19, 53, 195, 124, 75, 205, 12, 6, 145, 0, 28,
|
||||
30, 148, 8, 45, 218, 171, 55, 249, 97, 166, 12, 35, 0,
|
||||
41, 221, 122, 215, 170, 31, 113, 186, 97, 119, 31, 23, 185,
|
||||
66, 140, 30, 41, 37, 63, 137, 109, 216, 55, 159, 145, 82,
|
||||
204, 86, 73, 222, 44, 198, 118, 240, 97]
|
||||
|
||||
assert shared_random == reference_random
|
||||
|
||||
hunna_kay_random_sum = sum(np.array([next(g) for _ in range(100000)]).astype(np.uint8).tolist())
|
||||
|
||||
assert 12731374 == hunna_kay_random_sum
|
BIN
modules/textual_inversion/test_embedding.png
Normal file
BIN
modules/textual_inversion/test_embedding.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 478 KiB |
|
@ -7,11 +7,15 @@ import tqdm
|
|||
import html
|
||||
import datetime
|
||||
|
||||
from PIL import Image, PngImagePlugin
|
||||
|
||||
from modules import shared, devices, sd_hijack, processing, sd_models
|
||||
import modules.textual_inversion.dataset
|
||||
from modules.textual_inversion.learn_schedule import LearnSchedule
|
||||
|
||||
from modules.textual_inversion.image_embedding import (embedding_to_b64, embedding_from_b64,
|
||||
insert_image_data_embed, extract_image_data_embed,
|
||||
caption_image_overlay)
|
||||
|
||||
class Embedding:
|
||||
def __init__(self, vec, name, step=None):
|
||||
|
@ -81,7 +85,18 @@ class EmbeddingDatabase:
|
|||
def process_file(path, filename):
|
||||
name = os.path.splitext(filename)[0]
|
||||
|
||||
data = torch.load(path, map_location="cpu")
|
||||
data = []
|
||||
|
||||
if filename.upper().endswith('.PNG'):
|
||||
embed_image = Image.open(path)
|
||||
if 'sd-ti-embedding' in embed_image.text:
|
||||
data = embedding_from_b64(embed_image.text['sd-ti-embedding'])
|
||||
name = data.get('name', name)
|
||||
else:
|
||||
data = extract_image_data_embed(embed_image)
|
||||
name = data.get('name', name)
|
||||
else:
|
||||
data = torch.load(path, map_location="cpu")
|
||||
|
||||
# textual inversion embeddings
|
||||
if 'string_to_param' in data:
|
||||
|
@ -157,7 +172,8 @@ def create_embedding(name, num_vectors_per_token, init_text='*'):
|
|||
return fn
|
||||
|
||||
|
||||
def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, num_repeats, create_image_every, save_embedding_every, template_file, preview_image_prompt):
|
||||
|
||||
def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, num_repeats, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_image_prompt):
|
||||
assert embedding_name, 'embedding not selected'
|
||||
|
||||
shared.state.textinfo = "Initializing textual inversion training..."
|
||||
|
@ -179,6 +195,12 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
|
|||
else:
|
||||
images_dir = None
|
||||
|
||||
if create_image_every > 0 and save_image_with_stored_embedding:
|
||||
images_embeds_dir = os.path.join(log_directory, "image_embeddings")
|
||||
os.makedirs(images_embeds_dir, exist_ok=True)
|
||||
else:
|
||||
images_embeds_dir = None
|
||||
|
||||
cond_model = shared.sd_model.cond_stage_model
|
||||
|
||||
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
|
||||
|
@ -262,6 +284,26 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
|
|||
image = processed.images[0]
|
||||
|
||||
shared.state.current_image = image
|
||||
|
||||
if save_image_with_stored_embedding and os.path.exists(last_saved_file):
|
||||
|
||||
last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{embedding.step}.png')
|
||||
|
||||
info = PngImagePlugin.PngInfo()
|
||||
data = torch.load(last_saved_file)
|
||||
info.add_text("sd-ti-embedding", embedding_to_b64(data))
|
||||
|
||||
title = "<{}>".format(data.get('name', '???'))
|
||||
checkpoint = sd_models.select_checkpoint()
|
||||
footer_left = checkpoint.model_name
|
||||
footer_mid = '[{}]'.format(checkpoint.hash)
|
||||
footer_right = '{}'.format(embedding.step)
|
||||
|
||||
captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right)
|
||||
captioned_image = insert_image_data_embed(captioned_image, data)
|
||||
|
||||
captioned_image.save(last_saved_image_chunks, "PNG", pnginfo=info)
|
||||
|
||||
image.save(last_saved_image)
|
||||
|
||||
last_saved_image += f", prompt: {preview_text}"
|
||||
|
|
|
@ -1101,6 +1101,7 @@ def create_ui(wrap_gradio_gpu_call):
|
|||
num_repeats = gr.Number(label='Number of repeats for a single input image per epoch', value=100, precision=0)
|
||||
create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0)
|
||||
save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0)
|
||||
save_image_with_stored_embedding = gr.Checkbox(label='Save images with embedding in PNG chunks', value=True)
|
||||
preview_image_prompt = gr.Textbox(label='Preview prompt', value="")
|
||||
|
||||
with gr.Row():
|
||||
|
@ -1179,6 +1180,7 @@ def create_ui(wrap_gradio_gpu_call):
|
|||
create_image_every,
|
||||
save_embedding_every,
|
||||
template_file,
|
||||
save_image_with_stored_embedding,
|
||||
preview_image_prompt,
|
||||
],
|
||||
outputs=[
|
||||
|
|
Loading…
Reference in New Issue
Block a user