automatically detect v-parameterization for SD2 checkpoints
This commit is contained in:
parent
4aa7f5b5b9
commit
d04e3e921e
|
@ -131,6 +131,8 @@ class StableDiffusionModelHijack:
|
||||||
m.cond_stage_model.wrapped.model.token_embedding = m.cond_stage_model.wrapped.model.token_embedding.wrapped
|
m.cond_stage_model.wrapped.model.token_embedding = m.cond_stage_model.wrapped.model.token_embedding.wrapped
|
||||||
m.cond_stage_model = m.cond_stage_model.wrapped
|
m.cond_stage_model = m.cond_stage_model.wrapped
|
||||||
|
|
||||||
|
undo_optimizations()
|
||||||
|
|
||||||
self.apply_circular(False)
|
self.apply_circular(False)
|
||||||
self.layers = None
|
self.layers = None
|
||||||
self.clip = None
|
self.clip = None
|
||||||
|
|
|
@ -1,7 +1,9 @@
|
||||||
import re
|
import re
|
||||||
import os
|
import os
|
||||||
|
|
||||||
from modules import shared, paths
|
import torch
|
||||||
|
|
||||||
|
from modules import shared, paths, sd_disable_initialization
|
||||||
|
|
||||||
sd_configs_path = shared.sd_configs_path
|
sd_configs_path = shared.sd_configs_path
|
||||||
sd_repo_configs_path = os.path.join(paths.paths['Stable Diffusion'], "configs", "stable-diffusion")
|
sd_repo_configs_path = os.path.join(paths.paths['Stable Diffusion'], "configs", "stable-diffusion")
|
||||||
|
@ -16,12 +18,51 @@ config_inpainting = os.path.join(sd_configs_path, "v1-inpainting-inference.yaml"
|
||||||
config_instruct_pix2pix = os.path.join(sd_configs_path, "instruct-pix2pix.yaml")
|
config_instruct_pix2pix = os.path.join(sd_configs_path, "instruct-pix2pix.yaml")
|
||||||
config_alt_diffusion = os.path.join(sd_configs_path, "alt-diffusion-inference.yaml")
|
config_alt_diffusion = os.path.join(sd_configs_path, "alt-diffusion-inference.yaml")
|
||||||
|
|
||||||
re_parametrization_v = re.compile(r'-v\b')
|
|
||||||
|
def is_using_v_parameterization_for_sd2(state_dict):
|
||||||
|
"""
|
||||||
|
Detects whether unet in state_dict is using v-parameterization. Returns True if it is. You're welcome.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import ldm.modules.diffusionmodules.openaimodel
|
||||||
|
from modules import devices
|
||||||
|
|
||||||
|
device = devices.cpu
|
||||||
|
|
||||||
|
with sd_disable_initialization.DisableInitialization():
|
||||||
|
unet = ldm.modules.diffusionmodules.openaimodel.UNetModel(
|
||||||
|
use_checkpoint=True,
|
||||||
|
use_fp16=False,
|
||||||
|
image_size=32,
|
||||||
|
in_channels=4,
|
||||||
|
out_channels=4,
|
||||||
|
model_channels=320,
|
||||||
|
attention_resolutions=[4, 2, 1],
|
||||||
|
num_res_blocks=2,
|
||||||
|
channel_mult=[1, 2, 4, 4],
|
||||||
|
num_head_channels=64,
|
||||||
|
use_spatial_transformer=True,
|
||||||
|
use_linear_in_transformer=True,
|
||||||
|
transformer_depth=1,
|
||||||
|
context_dim=1024,
|
||||||
|
legacy=False
|
||||||
|
)
|
||||||
|
unet.eval()
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
unet_sd = {k.replace("model.diffusion_model.", ""): v for k, v in state_dict.items() if "model.diffusion_model." in k}
|
||||||
|
unet.load_state_dict(unet_sd, strict=True)
|
||||||
|
unet.to(device=device, dtype=torch.float)
|
||||||
|
|
||||||
|
test_cond = torch.ones((1, 2, 1024), device=device) * 0.5
|
||||||
|
x_test = torch.ones((1, 4, 8, 8), device=device) * 0.5
|
||||||
|
|
||||||
|
out = (unet(x_test, torch.asarray([999], device=device), context=test_cond) - x_test).mean().item()
|
||||||
|
|
||||||
|
return out < -1
|
||||||
|
|
||||||
|
|
||||||
def guess_model_config_from_state_dict(sd, filename):
|
def guess_model_config_from_state_dict(sd, filename):
|
||||||
fn = os.path.basename(filename)
|
|
||||||
|
|
||||||
sd2_cond_proj_weight = sd.get('cond_stage_model.model.transformer.resblocks.0.attn.in_proj_weight', None)
|
sd2_cond_proj_weight = sd.get('cond_stage_model.model.transformer.resblocks.0.attn.in_proj_weight', None)
|
||||||
diffusion_model_input = sd.get('model.diffusion_model.input_blocks.0.0.weight', None)
|
diffusion_model_input = sd.get('model.diffusion_model.input_blocks.0.0.weight', None)
|
||||||
|
|
||||||
|
@ -31,7 +72,7 @@ def guess_model_config_from_state_dict(sd, filename):
|
||||||
if sd2_cond_proj_weight is not None and sd2_cond_proj_weight.shape[1] == 1024:
|
if sd2_cond_proj_weight is not None and sd2_cond_proj_weight.shape[1] == 1024:
|
||||||
if diffusion_model_input.shape[1] == 9:
|
if diffusion_model_input.shape[1] == 9:
|
||||||
return config_sd2_inpainting
|
return config_sd2_inpainting
|
||||||
elif re.search(re_parametrization_v, fn):
|
elif is_using_v_parameterization_for_sd2(sd):
|
||||||
return config_sd2v
|
return config_sd2v
|
||||||
else:
|
else:
|
||||||
return config_sd2
|
return config_sd2
|
||||||
|
|
Loading…
Reference in New Issue
Block a user