automatically detect v-parameterization for SD2 checkpoints

This commit is contained in:
AUTOMATIC 2023-01-28 15:24:29 +03:00
parent 4aa7f5b5b9
commit d04e3e921e
2 changed files with 48 additions and 5 deletions

View File

@ -131,6 +131,8 @@ class StableDiffusionModelHijack:
m.cond_stage_model.wrapped.model.token_embedding = m.cond_stage_model.wrapped.model.token_embedding.wrapped m.cond_stage_model.wrapped.model.token_embedding = m.cond_stage_model.wrapped.model.token_embedding.wrapped
m.cond_stage_model = m.cond_stage_model.wrapped m.cond_stage_model = m.cond_stage_model.wrapped
undo_optimizations()
self.apply_circular(False) self.apply_circular(False)
self.layers = None self.layers = None
self.clip = None self.clip = None

View File

@ -1,7 +1,9 @@
import re import re
import os import os
from modules import shared, paths import torch
from modules import shared, paths, sd_disable_initialization
sd_configs_path = shared.sd_configs_path sd_configs_path = shared.sd_configs_path
sd_repo_configs_path = os.path.join(paths.paths['Stable Diffusion'], "configs", "stable-diffusion") sd_repo_configs_path = os.path.join(paths.paths['Stable Diffusion'], "configs", "stable-diffusion")
@ -16,12 +18,51 @@ config_inpainting = os.path.join(sd_configs_path, "v1-inpainting-inference.yaml"
config_instruct_pix2pix = os.path.join(sd_configs_path, "instruct-pix2pix.yaml") config_instruct_pix2pix = os.path.join(sd_configs_path, "instruct-pix2pix.yaml")
config_alt_diffusion = os.path.join(sd_configs_path, "alt-diffusion-inference.yaml") config_alt_diffusion = os.path.join(sd_configs_path, "alt-diffusion-inference.yaml")
re_parametrization_v = re.compile(r'-v\b')
def is_using_v_parameterization_for_sd2(state_dict):
"""
Detects whether unet in state_dict is using v-parameterization. Returns True if it is. You're welcome.
"""
import ldm.modules.diffusionmodules.openaimodel
from modules import devices
device = devices.cpu
with sd_disable_initialization.DisableInitialization():
unet = ldm.modules.diffusionmodules.openaimodel.UNetModel(
use_checkpoint=True,
use_fp16=False,
image_size=32,
in_channels=4,
out_channels=4,
model_channels=320,
attention_resolutions=[4, 2, 1],
num_res_blocks=2,
channel_mult=[1, 2, 4, 4],
num_head_channels=64,
use_spatial_transformer=True,
use_linear_in_transformer=True,
transformer_depth=1,
context_dim=1024,
legacy=False
)
unet.eval()
with torch.no_grad():
unet_sd = {k.replace("model.diffusion_model.", ""): v for k, v in state_dict.items() if "model.diffusion_model." in k}
unet.load_state_dict(unet_sd, strict=True)
unet.to(device=device, dtype=torch.float)
test_cond = torch.ones((1, 2, 1024), device=device) * 0.5
x_test = torch.ones((1, 4, 8, 8), device=device) * 0.5
out = (unet(x_test, torch.asarray([999], device=device), context=test_cond) - x_test).mean().item()
return out < -1
def guess_model_config_from_state_dict(sd, filename): def guess_model_config_from_state_dict(sd, filename):
fn = os.path.basename(filename)
sd2_cond_proj_weight = sd.get('cond_stage_model.model.transformer.resblocks.0.attn.in_proj_weight', None) sd2_cond_proj_weight = sd.get('cond_stage_model.model.transformer.resblocks.0.attn.in_proj_weight', None)
diffusion_model_input = sd.get('model.diffusion_model.input_blocks.0.0.weight', None) diffusion_model_input = sd.get('model.diffusion_model.input_blocks.0.0.weight', None)
@ -31,7 +72,7 @@ def guess_model_config_from_state_dict(sd, filename):
if sd2_cond_proj_weight is not None and sd2_cond_proj_weight.shape[1] == 1024: if sd2_cond_proj_weight is not None and sd2_cond_proj_weight.shape[1] == 1024:
if diffusion_model_input.shape[1] == 9: if diffusion_model_input.shape[1] == 9:
return config_sd2_inpainting return config_sd2_inpainting
elif re.search(re_parametrization_v, fn): elif is_using_v_parameterization_for_sd2(sd):
return config_sd2v return config_sd2v
else: else:
return config_sd2 return config_sd2