diff --git a/modules/extras.py b/modules/extras.py index 9e1efeda..90968352 100644 --- a/modules/extras.py +++ b/modules/extras.py @@ -140,7 +140,7 @@ def run_pnginfo(image): return '', geninfo, info -def run_modelmerger(from_model_name, to_model_name, interp_method, interp_amount): +def run_modelmerger(primary_model_name, secondary_model_name, interp_method, interp_amount): # Linear interpolation (https://en.wikipedia.org/wiki/Linear_interpolation) def weighted_sum(theta0, theta1, alpha): return ((1 - alpha) * theta0) + (alpha * theta1) @@ -150,23 +150,23 @@ def run_modelmerger(from_model_name, to_model_name, interp_method, interp_amount alpha = alpha * alpha * (3 - (2 * alpha)) return theta0 + ((theta1 - theta0) * alpha) - if os.path.exists(to_model_name): - to_model_filename = to_model_name - to_model_name = os.path.splitext(os.path.basename(to_model_name))[0] + if os.path.exists(secondary_model_name): + secondary_model_filename = secondary_model_name + secondary_model_name = os.path.splitext(os.path.basename(secondary_model_name))[0] else: - to_model_filename = 'models/' + to_model_name + '.ckpt' + secondary_model_filename = 'models/' + secondary_model_name + '.ckpt' - if os.path.exists(from_model_name): - from_model_filename = from_model_name - from_model_name = os.path.splitext(os.path.basename(from_model_name))[0] + if os.path.exists(primary_model_name): + primary_model_filename = primary_model_name + primary_model_name = os.path.splitext(os.path.basename(primary_model_name))[0] else: - from_model_filename = 'models/' + from_model_name + '.ckpt' + primary_model_filename = 'models/' + primary_model_name + '.ckpt' - print(f"Loading {to_model_filename}...") - model_0 = torch.load(to_model_filename, map_location='cpu') + print(f"Loading {secondary_model_filename}...") + model_0 = torch.load(secondary_model_filename, map_location='cpu') - print(f"Loading {from_model_filename}...") - model_1 = torch.load(from_model_filename, map_location='cpu') + print(f"Loading {primary_model_filename}...") + model_1 = torch.load(primary_model_filename, map_location='cpu') theta_0 = model_0['state_dict'] theta_1 = model_1['state_dict'] @@ -186,7 +186,7 @@ def run_modelmerger(from_model_name, to_model_name, interp_method, interp_amount if 'model' in key and key not in theta_0: theta_0[key] = theta_1[key] - output_modelname = 'models/' + from_model_name + '_' + str(interp_amount) + '-' + to_model_name + '_' + str(float(1.0) - interp_amount) + '-' + interp_method.replace(" ", "_") + '-merged.ckpt' + output_modelname = 'models/' + primary_model_name + '_' + str(interp_amount) + '-' + secondary_model_name + '_' + str(float(1.0) - interp_amount) + '-' + interp_method.replace(" ", "_") + '-merged.ckpt' print(f"Saving to {output_modelname}...") torch.save(model_0, output_modelname) diff --git a/modules/ui.py b/modules/ui.py index e7382ca8..4a5326f7 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -860,8 +860,9 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo, run_modelmerger): gr.HTML(value="
A merger of the two checkpoints will be generated in your /models directory.
") with gr.Row(): - from_model_name = gr.Textbox(elem_id="modelmerger_from_model_name", label="Model Name (from)") - to_model_name = gr.Textbox(elem_id="modelmerger_to_model_name", label="Model Name (to)") + ckpt_name_list = [x.model_name for x in modules.sd_models.checkpoints_list.values()] + primary_model_name = gr.Dropdown(ckpt_name_list, elem_id="modelmerger_primary_model_name", label="Primary Model Name") + secondary_model_name = gr.Dropdown(ckpt_name_list, elem_id="modelmerger_secondary_model_name", label="Secondary Model Name") interp_amount = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, label='Interpolation Amount', value=0.3) interp_method = gr.Radio(choices=["Weighted Sum", "Sigmoid"], value="Weighted Sum", label="Interpolation Method") submit = gr.Button(elem_id="modelmerger_merge", label="Merge", variant='primary') @@ -872,8 +873,8 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo, run_modelmerger): submit.click( fn=run_modelmerger, inputs=[ - from_model_name, - to_model_name, + primary_model_name, + secondary_model_name, interp_method, interp_amount ],