add safetensors support for model merging #4869
This commit is contained in:
parent
6074175faa
commit
dac9b6f15d
|
@ -20,6 +20,7 @@ import modules.codeformer_model
|
||||||
import piexif
|
import piexif
|
||||||
import piexif.helper
|
import piexif.helper
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
|
import safetensors.torch
|
||||||
|
|
||||||
|
|
||||||
class LruCache(OrderedDict):
|
class LruCache(OrderedDict):
|
||||||
|
@ -249,7 +250,7 @@ def run_pnginfo(image):
|
||||||
return '', geninfo, info
|
return '', geninfo, info
|
||||||
|
|
||||||
|
|
||||||
def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_name, interp_method, multiplier, save_as_half, custom_name):
|
def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_name, interp_method, multiplier, save_as_half, custom_name, checkpoint_format):
|
||||||
def weighted_sum(theta0, theta1, alpha):
|
def weighted_sum(theta0, theta1, alpha):
|
||||||
return ((1 - alpha) * theta0) + (alpha * theta1)
|
return ((1 - alpha) * theta0) + (alpha * theta1)
|
||||||
|
|
||||||
|
@ -264,19 +265,15 @@ def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_nam
|
||||||
teritary_model_info = sd_models.checkpoints_list.get(teritary_model_name, None)
|
teritary_model_info = sd_models.checkpoints_list.get(teritary_model_name, None)
|
||||||
|
|
||||||
print(f"Loading {primary_model_info.filename}...")
|
print(f"Loading {primary_model_info.filename}...")
|
||||||
primary_model = torch.load(primary_model_info.filename, map_location='cpu')
|
theta_0 = sd_models.read_state_dict(primary_model_info.filename, map_location='cpu')
|
||||||
theta_0 = sd_models.get_state_dict_from_checkpoint(primary_model)
|
|
||||||
|
|
||||||
print(f"Loading {secondary_model_info.filename}...")
|
print(f"Loading {secondary_model_info.filename}...")
|
||||||
secondary_model = torch.load(secondary_model_info.filename, map_location='cpu')
|
theta_1 = sd_models.read_state_dict(secondary_model_info.filename, map_location='cpu')
|
||||||
theta_1 = sd_models.get_state_dict_from_checkpoint(secondary_model)
|
|
||||||
|
|
||||||
if teritary_model_info is not None:
|
if teritary_model_info is not None:
|
||||||
print(f"Loading {teritary_model_info.filename}...")
|
print(f"Loading {teritary_model_info.filename}...")
|
||||||
teritary_model = torch.load(teritary_model_info.filename, map_location='cpu')
|
theta_2 = sd_models.read_state_dict(teritary_model_info.filename, map_location='cpu')
|
||||||
theta_2 = sd_models.get_state_dict_from_checkpoint(teritary_model)
|
|
||||||
else:
|
else:
|
||||||
teritary_model = None
|
|
||||||
theta_2 = None
|
theta_2 = None
|
||||||
|
|
||||||
theta_funcs = {
|
theta_funcs = {
|
||||||
|
@ -295,7 +292,7 @@ def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_nam
|
||||||
theta_1[key] = theta_func1(theta_1[key], t2)
|
theta_1[key] = theta_func1(theta_1[key], t2)
|
||||||
else:
|
else:
|
||||||
theta_1[key] = torch.zeros_like(theta_1[key])
|
theta_1[key] = torch.zeros_like(theta_1[key])
|
||||||
del theta_2, teritary_model
|
del theta_2
|
||||||
|
|
||||||
for key in tqdm.tqdm(theta_0.keys()):
|
for key in tqdm.tqdm(theta_0.keys()):
|
||||||
if 'model' in key and key in theta_1:
|
if 'model' in key and key in theta_1:
|
||||||
|
@ -314,12 +311,17 @@ def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_nam
|
||||||
|
|
||||||
ckpt_dir = shared.cmd_opts.ckpt_dir or sd_models.model_path
|
ckpt_dir = shared.cmd_opts.ckpt_dir or sd_models.model_path
|
||||||
|
|
||||||
filename = primary_model_info.model_name + '_' + str(round(1-multiplier, 2)) + '-' + secondary_model_info.model_name + '_' + str(round(multiplier, 2)) + '-' + interp_method.replace(" ", "_") + '-merged.ckpt'
|
filename = primary_model_info.model_name + '_' + str(round(1-multiplier, 2)) + '-' + secondary_model_info.model_name + '_' + str(round(multiplier, 2)) + '-' + interp_method.replace(" ", "_") + '-merged.' + checkpoint_format
|
||||||
filename = filename if custom_name == '' else (custom_name + '.ckpt')
|
filename = filename if custom_name == '' else (custom_name + '.' + checkpoint_format)
|
||||||
output_modelname = os.path.join(ckpt_dir, filename)
|
output_modelname = os.path.join(ckpt_dir, filename)
|
||||||
|
|
||||||
print(f"Saving to {output_modelname}...")
|
print(f"Saving to {output_modelname}...")
|
||||||
torch.save(primary_model, output_modelname)
|
|
||||||
|
_, extension = os.path.splitext(output_modelname)
|
||||||
|
if extension.lower() == ".safetensors":
|
||||||
|
safetensors.torch.save_file(theta_0, output_modelname, metadata={"format": "pt"})
|
||||||
|
else:
|
||||||
|
torch.save(theta_0, output_modelname)
|
||||||
|
|
||||||
sd_models.list_models()
|
sd_models.list_models()
|
||||||
|
|
||||||
|
|
|
@ -160,6 +160,20 @@ def get_state_dict_from_checkpoint(pl_sd):
|
||||||
return pl_sd
|
return pl_sd
|
||||||
|
|
||||||
|
|
||||||
|
def read_state_dict(checkpoint_file, print_global_state=False, map_location=None):
|
||||||
|
_, extension = os.path.splitext(checkpoint_file)
|
||||||
|
if extension.lower() == ".safetensors":
|
||||||
|
pl_sd = safetensors.torch.load_file(checkpoint_file, device=map_location or shared.weight_load_location)
|
||||||
|
else:
|
||||||
|
pl_sd = torch.load(checkpoint_file, map_location=map_location or shared.weight_load_location)
|
||||||
|
|
||||||
|
if print_global_state and "global_step" in pl_sd:
|
||||||
|
print(f"Global Step: {pl_sd['global_step']}")
|
||||||
|
|
||||||
|
sd = get_state_dict_from_checkpoint(pl_sd)
|
||||||
|
return sd
|
||||||
|
|
||||||
|
|
||||||
def load_model_weights(model, checkpoint_info, vae_file="auto"):
|
def load_model_weights(model, checkpoint_info, vae_file="auto"):
|
||||||
checkpoint_file = checkpoint_info.filename
|
checkpoint_file = checkpoint_info.filename
|
||||||
sd_model_hash = checkpoint_info.hash
|
sd_model_hash = checkpoint_info.hash
|
||||||
|
@ -174,17 +188,7 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"):
|
||||||
# load from file
|
# load from file
|
||||||
print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}")
|
print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}")
|
||||||
|
|
||||||
_, extension = os.path.splitext(checkpoint_file)
|
sd = read_state_dict(checkpoint_file)
|
||||||
if extension.lower() == ".safetensors":
|
|
||||||
pl_sd = safetensors.torch.load_file(checkpoint_file, device=shared.weight_load_location)
|
|
||||||
else:
|
|
||||||
pl_sd = torch.load(checkpoint_file, map_location=shared.weight_load_location)
|
|
||||||
|
|
||||||
if "global_step" in pl_sd:
|
|
||||||
print(f"Global Step: {pl_sd['global_step']}")
|
|
||||||
|
|
||||||
sd = get_state_dict_from_checkpoint(pl_sd)
|
|
||||||
del pl_sd
|
|
||||||
model.load_state_dict(sd, strict=False)
|
model.load_state_dict(sd, strict=False)
|
||||||
del sd
|
del sd
|
||||||
|
|
||||||
|
|
|
@ -1164,7 +1164,11 @@ def create_ui(wrap_gradio_gpu_call):
|
||||||
custom_name = gr.Textbox(label="Custom Name (Optional)")
|
custom_name = gr.Textbox(label="Custom Name (Optional)")
|
||||||
interp_amount = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, label='Multiplier (M) - set to 0 to get model A', value=0.3)
|
interp_amount = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, label='Multiplier (M) - set to 0 to get model A', value=0.3)
|
||||||
interp_method = gr.Radio(choices=["Weighted sum", "Add difference"], value="Weighted sum", label="Interpolation Method")
|
interp_method = gr.Radio(choices=["Weighted sum", "Add difference"], value="Weighted sum", label="Interpolation Method")
|
||||||
|
|
||||||
|
with gr.Row():
|
||||||
|
checkpoint_format = gr.Radio(choices=["ckpt", "safetensors"], value="ckpt", label="Checkpoint format")
|
||||||
save_as_half = gr.Checkbox(value=False, label="Save as float16")
|
save_as_half = gr.Checkbox(value=False, label="Save as float16")
|
||||||
|
|
||||||
modelmerger_merge = gr.Button(elem_id="modelmerger_merge", label="Merge", variant='primary')
|
modelmerger_merge = gr.Button(elem_id="modelmerger_merge", label="Merge", variant='primary')
|
||||||
|
|
||||||
with gr.Column(variant='panel'):
|
with gr.Column(variant='panel'):
|
||||||
|
@ -1692,6 +1696,7 @@ def create_ui(wrap_gradio_gpu_call):
|
||||||
interp_amount,
|
interp_amount,
|
||||||
save_as_half,
|
save_as_half,
|
||||||
custom_name,
|
custom_name,
|
||||||
|
checkpoint_format,
|
||||||
],
|
],
|
||||||
outputs=[
|
outputs=[
|
||||||
submit_result,
|
submit_result,
|
||||||
|
|
Loading…
Reference in New Issue
Block a user