added detailed installation instructions
fixed bug with missing same dir for a new install added ctrl+c hander to immediately stop the program instead of waiting
This commit is contained in:
parent
765d7bc6be
commit
e38ad2ee95
83
README.md
83
README.md
|
@ -6,50 +6,77 @@ Original script with Gradio UI was written by a kind anonymous user. This is a m
|
|||
![](screenshot.png)
|
||||
## Installing and running
|
||||
|
||||
### Stable Diffusion
|
||||
You need python and git installed to run this. I tested the installation to work with Python 3.8.10,
|
||||
you may be able to run this on different versions.
|
||||
|
||||
This script assumes that you already have main Stable Diffusion sutff installed, assumed to be in directory `/sd`.
|
||||
If you don't have it installed, follow the guide:
|
||||
You need Stable Diffusion model checkpoint, a big file containing the neural network weights. You
|
||||
can obtain it from the following places:
|
||||
- [official download](https://huggingface.co/CompVis/stable-diffusion-v-1-4-original)
|
||||
- [file storage](https://drive.yerf.org/wl/?id=EBfTrmcCCUAGaQBXVIj5lJmEhjoP1tgl)
|
||||
- [torrent](magnet:?xt=urn:btih:3a4a612d75ed088ea542acac52f9f45987488d1c&dn=sd-v1-4.ckpt&tr=udp%3a%2f%2ftracker.openbittorrent.com%3a6969%2fannounce&tr=udp%3a%2f%2ftracker.opentrackr.org%3a1337)
|
||||
|
||||
- https://rentry.org/kretard
|
||||
You optionally can use GPFGAN to improve faces, then you'll need to download the model from [here](https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth).
|
||||
|
||||
This repository's `webgui.py` is a replacement for `kdiff.py` from the guide.
|
||||
Instructions:
|
||||
|
||||
Particularly, following files must exist:
|
||||
```commandline
|
||||
:: crate a directory somewhere for stable diffusion and open cmd in it; below the directorty is assumed to be b:\src\sd
|
||||
:: make sure you are in the right directory; the command must output b:\src\sd1
|
||||
echo %cd%
|
||||
|
||||
- `/sd/configs/stable-diffusion/v1-inference.yaml`
|
||||
- `/sd/models/ldm/stable-diffusion-v1/model.ckpt`
|
||||
- `/sd/ldm/util.py`
|
||||
- `/sd/k_diffusion/__init__.py`
|
||||
:: install torch with CUDA support. See https://pytorch.org/get-started/locally/ for more instructions if this fails.
|
||||
pip install torch --extra-index-url https://download.pytorch.org/whl/cu113
|
||||
|
||||
### GFPGAN
|
||||
:: check if torch supports GPU; this must output "True". You need CUDA 11. installed for this. You might be able to use
|
||||
:: a different version, but this is what I tested.
|
||||
python -c "import torch; print(torch.cuda.is_available())"
|
||||
|
||||
If you want to use GFPGAN to improve generated faces, you need to install it separately.
|
||||
Follow instructions from https://github.com/TencentARC/GFPGAN, but when cloning it, do so into Stable Diffusion main directory, `/sd`.
|
||||
After that download [GFPGANv1.3.pth](https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth) and put it
|
||||
into the `/sd/GFPGAN/experiments/pretrained_models` directory. If you're getting troubles with GFPGAN support, follow instructions
|
||||
from the GFPGAN's repository until `inference_gfpgan.py` script works.
|
||||
:: clone Stable Diffusion repositories
|
||||
git clone https://github.com/CompVis/stable-diffusion.git
|
||||
git clone https://github.com/CompVis/taming-transformers
|
||||
|
||||
The following files must exist:
|
||||
:: install requirements of Stable Diffusion
|
||||
pip install transformers==4.19.2 diffusers invisible-watermark
|
||||
|
||||
- `/sd/GFPGAN/inference_gfpgan.py`
|
||||
- `/sd/GFPGAN/experiments/pretrained_models/GFPGANv1.3.pth`
|
||||
:: install k-diffusion
|
||||
pip install git+https://github.com/crowsonkb/k-diffusion.git
|
||||
|
||||
If the GFPGAN directory does not exist, you will not get the option to use GFPGAN in the UI. If it does exist, you will either be able
|
||||
to use it, or there will be a message in console with an error related to GFPGAN.
|
||||
:: (optional) install GFPGAN to fix faces
|
||||
pip install git+https://github.com/TencentARC/GFPGAN.git
|
||||
|
||||
### Web UI
|
||||
:: go into stable diffusion's repo directory
|
||||
cd stable-diffusion
|
||||
|
||||
Run the script as:
|
||||
:: clone web ui
|
||||
git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
|
||||
|
||||
`python webui.py`
|
||||
:: install requirements of web ui
|
||||
pip install -r stable-diffusion-webui/requirements.txt
|
||||
|
||||
When running the script, you must be in the main Stable Diffusion directory, `/sd`. If you cloned this repository into a subdirectory
|
||||
of `/sd`, say, the `stable-diffusion-webui` directory, you will run it as:
|
||||
:: (outside of command line) put stable diffusion model into models/ldm/stable-diffusion-v1/model.ckpt; you'll have
|
||||
:: to create one missing directory;
|
||||
:: the command below must output something like: 1 File(s) 4,265,380,512 bytes
|
||||
dir models\ldm\stable-diffusion-v1\model.ckpt
|
||||
|
||||
`python stable-diffusion-webui/webui.py`
|
||||
:: (outside of command line) put the GFPGAN model into same directory as webui script
|
||||
:: the command below must output something like: 1 File(s) 348,632,874 bytes
|
||||
dir stable-diffusion-webui\GFPGANv1.3.pth
|
||||
```
|
||||
|
||||
After that the installation is finished.
|
||||
|
||||
Run the command to start web ui:
|
||||
|
||||
```
|
||||
python stable-diffusion-webui/webui.py
|
||||
```
|
||||
|
||||
If you have a 4GB video card, run the command with `--lowvram` argument:
|
||||
|
||||
```
|
||||
python stable-diffusion-webui/webui.py --lowvram
|
||||
```
|
||||
|
||||
When launching, you may get a very long warning message related to some weights not being used. You may freely ignore it.
|
||||
After a while, you will get a message like this:
|
||||
|
||||
```
|
||||
|
|
10
requirements.txt
Normal file
10
requirements.txt
Normal file
|
@ -0,0 +1,10 @@
|
|||
basicsr
|
||||
gfpgan
|
||||
gradio
|
||||
numpy
|
||||
Pillow
|
||||
realesrgan
|
||||
torch
|
||||
transformers
|
||||
omegaconf
|
||||
pytorch_lightning
|
68
webui.py
68
webui.py
|
@ -1,8 +1,18 @@
|
|||
import argparse
|
||||
import os
|
||||
import sys
|
||||
from collections import namedtuple
|
||||
from contextlib import nullcontext
|
||||
|
||||
script_path = os.path.dirname(os.path.realpath(__file__))
|
||||
sd_path = os.path.dirname(script_path)
|
||||
|
||||
# add parent directory to path; this is where Stable diffusion repo should be
|
||||
path_dirs = [(sd_path, 'ldm', 'Stable Diffusion'), ('../../taming-transformers', 'taming', 'Taming Transformers')]
|
||||
for d, must_exist, what in path_dirs:
|
||||
must_exist_path = os.path.abspath(os.path.join(script_path, d, must_exist))
|
||||
if not os.path.exists(must_exist_path):
|
||||
print(f"Warning: {what} not found at path {must_exist_path}", file=sys.stderr)
|
||||
else:
|
||||
sys.path.append(os.path.join(script_path, d))
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
@ -19,6 +29,9 @@ import html
|
|||
import time
|
||||
import json
|
||||
import traceback
|
||||
from collections import namedtuple
|
||||
from contextlib import nullcontext
|
||||
import signal
|
||||
|
||||
import k_diffusion.sampling
|
||||
from ldm.util import instantiate_from_config
|
||||
|
@ -33,7 +46,6 @@ gradio.utils.get_local_ip_address = lambda: '127.0.0.1'
|
|||
mimetypes.init()
|
||||
mimetypes.add_type('application/javascript', '.js')
|
||||
|
||||
script_path = os.path.dirname(os.path.realpath(__file__))
|
||||
|
||||
# some of those options should not be changed at all because they would break the model, so I removed them from options.
|
||||
opt_C = 4
|
||||
|
@ -44,9 +56,10 @@ invalid_filename_chars = '<>:"/\\|?*\n'
|
|||
config_filename = "config.json"
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--config", type=str, default="configs/stable-diffusion/v1-inference.yaml", help="path to config which constructs model",)
|
||||
parser.add_argument("--ckpt", type=str, default="models/ldm/stable-diffusion-v1/model.ckpt", help="path to checkpoint of model",)
|
||||
parser.add_argument("--config", type=str, default=os.path.join(sd_path, "configs/stable-diffusion/v1-inference.yaml"), help="path to config which constructs model",)
|
||||
parser.add_argument("--ckpt", type=str, default=os.path.join(sd_path, "models/ldm/stable-diffusion-v1/model.ckpt"), help="path to checkpoint of model",)
|
||||
parser.add_argument("--gfpgan-dir", type=str, help="GFPGAN directory", default=('./src/gfpgan' if os.path.exists('./src/gfpgan') else './GFPGAN'))
|
||||
parser.add_argument("--gfpgan-model", type=str, help="GFPGAN model file name", default='GFPGANv1.3.pth')
|
||||
parser.add_argument("--no-half", action='store_true', help="do not switch the model to 16-bit floats")
|
||||
parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware accleration in browser)")
|
||||
parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI")
|
||||
|
@ -122,25 +135,34 @@ sd_upscalers = {
|
|||
}
|
||||
|
||||
|
||||
have_gfpgan = False
|
||||
if os.path.exists(cmd_opts.gfpgan_dir):
|
||||
try:
|
||||
sys.path.append(os.path.abspath(cmd_opts.gfpgan_dir))
|
||||
from gfpgan import GFPGANer
|
||||
def gfpgan_model_path():
|
||||
places = [script_path, '.', os.path.join(cmd_opts.gfpgan_dir, 'experiments/pretrained_models')]
|
||||
files = [cmd_opts.gfpgan_model] + [os.path.join(dirname, cmd_opts.gfpgan_model) for dirname in places]
|
||||
found = [x for x in files if os.path.exists(x)]
|
||||
|
||||
have_gfpgan = True
|
||||
except:
|
||||
print("Error importing GFPGAN:", file=sys.stderr)
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
if len(found) == 0:
|
||||
raise Exception("GFPGAN model not found in paths: " + ", ".join(files))
|
||||
|
||||
return found[0]
|
||||
|
||||
|
||||
def gfpgan():
|
||||
model_name = 'GFPGANv1.3'
|
||||
model_path = os.path.join(cmd_opts.gfpgan_dir, 'experiments/pretrained_models', model_name + '.pth')
|
||||
if not os.path.isfile(model_path):
|
||||
raise Exception("GFPGAN model not found at path "+model_path)
|
||||
return GFPGANer(model_path=gfpgan_model_path(), upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None)
|
||||
|
||||
|
||||
have_gfpgan = False
|
||||
try:
|
||||
model_path = gfpgan_model_path()
|
||||
|
||||
if os.path.exists(cmd_opts.gfpgan_dir):
|
||||
sys.path.append(os.path.abspath(cmd_opts.gfpgan_dir))
|
||||
from gfpgan import GFPGANer
|
||||
|
||||
have_gfpgan = True
|
||||
except Exception:
|
||||
print("Error setting up GFPGAN:", file=sys.stderr)
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
|
||||
return GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None)
|
||||
|
||||
|
||||
class Options:
|
||||
|
@ -865,6 +887,7 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
|||
seed = int(random.randrange(4294967294) if p.seed == -1 else p.seed)
|
||||
|
||||
sample_path = os.path.join(p.outpath, "samples")
|
||||
os.makedirs(sample_path, exist_ok=True)
|
||||
base_count = len(os.listdir(sample_path))
|
||||
grid_count = len(os.listdir(p.outpath)) - 1
|
||||
|
||||
|
@ -1669,5 +1692,12 @@ demo = gr.TabbedInterface(
|
|||
analytics_enabled=False,
|
||||
)
|
||||
|
||||
# make the program just exit at ctrl+c without waiting for anything
|
||||
def sigint_handler(signal, frame):
|
||||
print('Interrupted')
|
||||
os._exit(0)
|
||||
|
||||
signal.signal(signal.SIGINT, sigint_handler)
|
||||
|
||||
demo.queue(concurrency_count=1)
|
||||
demo.launch()
|
||||
|
|
Loading…
Reference in New Issue
Block a user