Merge branch 'master' into master

This commit is contained in:
AUTOMATIC1111 2022-10-15 10:13:16 +03:00 committed by GitHub
commit ea8aa1701a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 216 additions and 136 deletions

View File

@ -163,10 +163,15 @@ function images_history_init(){
for (var i in images_history_tab_list){
var tabname = images_history_tab_list[i]
tab_btns[i].setAttribute("tabname", tabname);
tab_btns[i].addEventListener('click', images_history_click_tab);
// this refreshes history upon tab switch
// until the history is known to work well, which is not the case now, we do not do this at startup
//tab_btns[i].addEventListener('click', images_history_click_tab);
}
tabs_box.classList.add(images_history_tab_list[0]);
load_txt2img_button.click();
tabs_box.classList.add(images_history_tab_list[0]);
// same as above, at page load
//load_txt2img_button.click();
} else {
setTimeout(images_history_init, 500);
}
@ -182,12 +187,15 @@ document.addEventListener("DOMContentLoaded", function() {
buttons.forEach(function(bnt){
bnt.addEventListener('click', images_history_click_image, true);
});
// same as load_txt2img_button.click() above
/*
var cls_btn = gradioApp().getElementById(tabname + '_images_history_gallery').querySelector("svg");
if (cls_btn){
cls_btn.addEventListener('click', function(){
gradioApp().getElementById(tabname + '_images_history_renew_page').click();
}, false);
}
}*/
}
});

View File

@ -1,5 +1,7 @@
// code related to showing and updating progressbar shown as the image is being made
global_progressbars = {}
galleries = {}
galleryObservers = {}
function check_progressbar(id_part, id_progressbar, id_progressbar_span, id_skip, id_interrupt, id_preview, id_gallery){
var progressbar = gradioApp().getElementById(id_progressbar)
@ -31,13 +33,24 @@ function check_progressbar(id_part, id_progressbar, id_progressbar_span, id_skip
preview.style.width = gallery.clientWidth + "px"
preview.style.height = gallery.clientHeight + "px"
//only watch gallery if there is a generation process going on
check_gallery(id_gallery);
var progressDiv = gradioApp().querySelectorAll('#' + id_progressbar_span).length > 0;
if(!progressDiv){
if (skip) {
skip.style.display = "none"
}
interrupt.style.display = "none"
//disconnect observer once generation finished, so user can close selected image if they want
if (galleryObservers[id_gallery]) {
galleryObservers[id_gallery].disconnect();
galleries[id_gallery] = null;
}
}
}
window.setTimeout(function() { requestMoreProgress(id_part, id_progressbar_span, id_skip, id_interrupt) }, 500)
@ -46,6 +59,28 @@ function check_progressbar(id_part, id_progressbar, id_progressbar_span, id_skip
}
}
function check_gallery(id_gallery){
let gallery = gradioApp().getElementById(id_gallery)
// if gallery has no change, no need to setting up observer again.
if (gallery && galleries[id_gallery] !== gallery){
galleries[id_gallery] = gallery;
if(galleryObservers[id_gallery]){
galleryObservers[id_gallery].disconnect();
}
let prevSelectedIndex = selected_gallery_index();
galleryObservers[id_gallery] = new MutationObserver(function (){
let galleryButtons = gradioApp().querySelectorAll('#'+id_gallery+' .gallery-item')
let galleryBtnSelected = gradioApp().querySelector('#'+id_gallery+' .gallery-item.\\!ring-2')
if (prevSelectedIndex !== -1 && galleryButtons.length>prevSelectedIndex && !galleryBtnSelected) {
//automatically re-open previously selected index (if exists)
galleryButtons[prevSelectedIndex].click();
showGalleryImage();
}
})
galleryObservers[id_gallery].observe( gallery, { childList:true, subtree:false })
}
}
onUiUpdate(function(){
check_progressbar('txt2img', 'txt2img_progressbar', 'txt2img_progress_span', 'txt2img_skip', 'txt2img_interrupt', 'txt2img_preview', 'txt2img_gallery')
check_progressbar('img2img', 'img2img_progressbar', 'img2img_progress_span', 'img2img_skip', 'img2img_interrupt', 'img2img_preview', 'img2img_gallery')

View File

@ -187,12 +187,10 @@ onUiUpdate(function(){
if (!txt2img_textarea) {
txt2img_textarea = gradioApp().querySelector("#txt2img_prompt > label > textarea");
txt2img_textarea?.addEventListener("input", () => update_token_counter("txt2img_token_button"));
txt2img_textarea?.addEventListener("keyup", (event) => submit_prompt(event, "txt2img_generate"));
}
if (!img2img_textarea) {
img2img_textarea = gradioApp().querySelector("#img2img_prompt > label > textarea");
img2img_textarea?.addEventListener("input", () => update_token_counter("img2img_token_button"));
img2img_textarea?.addEventListener("keyup", (event) => submit_prompt(event, "img2img_generate"));
}
})
@ -220,14 +218,6 @@ function update_token_counter(button_id) {
token_timeout = setTimeout(() => gradioApp().getElementById(button_id)?.click(), wait_time);
}
function submit_prompt(event, generate_button_id) {
if (event.altKey && event.keyCode === 13) {
event.preventDefault();
gradioApp().getElementById(generate_button_id).click();
return;
}
}
function restart_reload(){
document.body.innerHTML='<h1 style="font-family:monospace;margin-top:20%;color:lightgray;text-align:center;">Reloading...</h1>';
setTimeout(function(){location.reload()},2000)

View File

@ -9,6 +9,7 @@ import platform
dir_repos = "repositories"
python = sys.executable
git = os.environ.get('GIT', "git")
index_url = os.environ.get('INDEX_URL',"")
def extract_arg(args, name):
@ -57,7 +58,7 @@ def run_python(code, desc=None, errdesc=None):
def run_pip(args, desc=None):
return run(f'"{python}" -m pip {args} --prefer-binary', desc=f"Installing {desc}", errdesc=f"Couldn't install {desc}")
return run(f'"{python}" -m pip {args} --prefer-binary{f' --index-url {index_url}' if index_url!='' else ''}', desc=f"Installing {desc}", errdesc=f"Couldn't install {desc}")
def check_run_python(code):

View File

@ -182,7 +182,21 @@ def attention_CrossAttention_forward(self, x, context=None, mask=None):
return self.to_out(out)
def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
def stack_conds(conds):
if len(conds) == 1:
return torch.stack(conds)
# same as in reconstruct_multicond_batch
token_count = max([x.shape[0] for x in conds])
for i in range(len(conds)):
if conds[i].shape[0] != token_count:
last_vector = conds[i][-1:]
last_vector_repeated = last_vector.repeat([token_count - conds[i].shape[0], 1])
conds[i] = torch.vstack([conds[i], last_vector_repeated])
return torch.stack(conds)
def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
assert hypernetwork_name, 'hypernetwork not selected'
path = shared.hypernetworks.get(hypernetwork_name, None)
@ -211,7 +225,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
with torch.autocast("cuda"):
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True)
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size)
if unload:
shared.sd_model.cond_stage_model.to(devices.cpu)
@ -235,7 +249,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate)
pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
for i, entry in pbar:
for i, entries in pbar:
hypernetwork.step = i + ititial_step
scheduler.apply(optimizer, hypernetwork.step)
@ -246,11 +260,12 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
break
with torch.autocast("cuda"):
cond = entry.cond.to(devices.device)
x = entry.latent.to(devices.device)
loss = shared.sd_model(x.unsqueeze(0), cond)[0]
c = stack_conds([entry.cond for entry in entries]).to(devices.device)
# c = torch.vstack([entry.cond for entry in entries]).to(devices.device)
x = torch.stack([entry.latent for entry in entries]).to(devices.device)
loss = shared.sd_model(x, c)[0]
del x
del cond
del c
losses[hypernetwork.step % losses.shape[0]] = loss.item()
@ -292,7 +307,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
p.width = preview_width
p.height = preview_height
else:
p.prompt = entry.cond_text
p.prompt = entries[0].cond_text
p.steps = 20
preview_text = p.prompt
@ -315,7 +330,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
<p>
Loss: {losses.mean():.7f}<br/>
Step: {hypernetwork.step}<br/>
Last prompt: {html.escape(entry.cond_text)}<br/>
Last prompt: {html.escape(entries[0].cond_text)}<br/>
Last saved embedding: {html.escape(last_saved_file)}<br/>
Last saved image: {html.escape(last_saved_image)}<br/>
</p>

View File

@ -1,5 +1,7 @@
import os
import shutil
def traverse_all_files(output_dir, image_list, curr_dir=None):
curr_path = output_dir if curr_dir is None else os.path.join(output_dir, curr_dir)
try:
@ -16,10 +18,10 @@ def traverse_all_files(output_dir, image_list, curr_dir=None):
elif os.path.isfile(file_path) and file[-10:].rfind(".") > 0:
image_list.append(file)
else:
image_list = traverse_all_files(output_dir, image_list, file)
image_list = traverse_all_files(output_dir, image_list, file)
return image_list
def get_recent_images(dir_name, page_index, step, image_index, tabname):
page_index = int(page_index)
f_list = os.listdir(dir_name)
@ -27,36 +29,48 @@ def get_recent_images(dir_name, page_index, step, image_index, tabname):
image_list = traverse_all_files(dir_name, image_list)
image_list = sorted(image_list, key=lambda file: -os.path.getctime(os.path.join(dir_name, file)))
num = 48 if tabname != "extras" else 12
max_page_index = len(image_list) // num + 1
max_page_index = len(image_list) // num + 1
page_index = max_page_index if page_index == -1 else page_index + step
page_index = 1 if page_index < 1 else page_index
page_index = 1 if page_index < 1 else page_index
page_index = max_page_index if page_index > max_page_index else page_index
idx_frm = (page_index - 1) * num
image_list = image_list[idx_frm:idx_frm + num]
image_index = int(image_index)
if image_index < 0 or image_index > len(image_list) - 1:
current_file = None
if image_index < 0 or image_index > len(image_list) - 1:
current_file = None
hidden = None
else:
current_file = image_list[int(image_index)]
current_file = image_list[int(image_index)]
hidden = os.path.join(dir_name, current_file)
return [os.path.join(dir_name, file) for file in image_list], page_index, image_list, current_file, hidden, ""
def first_page_click(dir_name, page_index, image_index, tabname):
return get_recent_images(dir_name, 1, 0, image_index, tabname)
def end_page_click(dir_name, page_index, image_index, tabname):
return get_recent_images(dir_name, -1, 0, image_index, tabname)
def prev_page_click(dir_name, page_index, image_index, tabname):
return get_recent_images(dir_name, page_index, -1, image_index, tabname)
def next_page_click(dir_name, page_index, image_index, tabname):
def next_page_click(dir_name, page_index, image_index, tabname):
return get_recent_images(dir_name, page_index, 1, image_index, tabname)
def page_index_change(dir_name, page_index, image_index, tabname):
def page_index_change(dir_name, page_index, image_index, tabname):
return get_recent_images(dir_name, page_index, 0, image_index, tabname)
def show_image_info(num, image_path, filenames):
#print(f"select image {num}")
# print(f"select image {num}")
file = filenames[int(num)]
return file, num, os.path.join(image_path, file)
def delete_image(delete_num, tabname, dir_name, name, page_index, filenames, image_index):
if name == "":
return filenames, delete_num
@ -66,14 +80,14 @@ def delete_image(delete_num, tabname, dir_name, name, page_index, filenames, ima
i = 0
new_file_list = []
for name in filenames:
if i >= index and i < index + delete_num:
if i >= index and i < index + delete_num:
path = os.path.join(dir_name, name)
if os.path.exists(path):
if os.path.exists(path):
print(f"Delete file {path}")
os.remove(path)
txt_file = os.path.splitext(path)[0] + ".txt"
txt_file = os.path.splitext(path)[0] + ".txt"
if os.path.exists(txt_file):
os.remove(txt_file)
os.remove(txt_file)
else:
print(f"Not exists file {path}")
else:
@ -81,81 +95,83 @@ def delete_image(delete_num, tabname, dir_name, name, page_index, filenames, ima
i += 1
return new_file_list, 1
def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict):
if tabname == "txt2img":
dir_name = opts.outdir_txt2img_samples
elif tabname == "img2img":
dir_name = opts.outdir_img2img_samples
elif tabname == "extras":
dir_name = opts.outdir_extras_samples
d = dir_name.split("/")
dir_name = d[0]
for p in d[1:]:
dir_name = os.path.join(dir_name, p)
with gr.Row():
renew_page = gr.Button('Renew Page', elem_id=tabname + "_images_history_renew_page")
first_page = gr.Button('First Page')
prev_page = gr.Button('Prev Page')
page_index = gr.Number(value=1, label="Page Index")
next_page = gr.Button('Next Page')
end_page = gr.Button('End Page')
with gr.Row(elem_id=tabname + "_images_history"):
with gr.Row():
with gr.Column(scale=2):
history_gallery = gr.Gallery(show_label=False, elem_id=tabname + "_images_history_gallery").style(grid=6)
with gr.Row():
delete_num = gr.Number(value=1, interactive=True, label="number of images to delete consecutively next")
delete = gr.Button('Delete', elem_id=tabname + "_images_history_del_button")
with gr.Column():
with gr.Row():
pnginfo_send_to_txt2img = gr.Button('Send to txt2img')
pnginfo_send_to_img2img = gr.Button('Send to img2img')
with gr.Row():
with gr.Column():
img_file_info = gr.Textbox(label="Generate Info", interactive=False)
img_file_name = gr.Textbox(label="File Name", interactive=False)
with gr.Row():
# hiden items
if opts.outdir_samples != "":
dir_name = opts.outdir_samples
elif tabname == "txt2img":
dir_name = opts.outdir_txt2img_samples
elif tabname == "img2img":
dir_name = opts.outdir_img2img_samples
elif tabname == "extras":
dir_name = opts.outdir_extras_samples
d = dir_name.split("/")
dir_name = "/" if dir_name.startswith("/") else d[0]
for p in d[1:]:
dir_name = os.path.join(dir_name, p)
with gr.Row():
renew_page = gr.Button('Renew Page', elem_id=tabname + "_images_history_renew_page")
first_page = gr.Button('First Page')
prev_page = gr.Button('Prev Page')
page_index = gr.Number(value=1, label="Page Index")
next_page = gr.Button('Next Page')
end_page = gr.Button('End Page')
with gr.Row(elem_id=tabname + "_images_history"):
with gr.Row():
with gr.Column(scale=2):
history_gallery = gr.Gallery(show_label=False, elem_id=tabname + "_images_history_gallery").style(grid=6)
with gr.Row():
delete_num = gr.Number(value=1, interactive=True, label="number of images to delete consecutively next")
delete = gr.Button('Delete', elem_id=tabname + "_images_history_del_button")
with gr.Column():
with gr.Row():
pnginfo_send_to_txt2img = gr.Button('Send to txt2img')
pnginfo_send_to_img2img = gr.Button('Send to img2img')
with gr.Row():
with gr.Column():
img_file_info = gr.Textbox(label="Generate Info", interactive=False)
img_file_name = gr.Textbox(label="File Name", interactive=False)
with gr.Row():
# hiden items
img_path = gr.Textbox(dir_name.rstrip("/") , visible=False)
tabname_box = gr.Textbox(tabname, visible=False)
image_index = gr.Textbox(value=-1, visible=False)
set_index = gr.Button('set_index', elem_id=tabname + "_images_history_set_index", visible=False)
filenames = gr.State()
hidden = gr.Image(type="pil", visible=False)
info1 = gr.Textbox(visible=False)
info2 = gr.Textbox(visible=False)
img_path = gr.Textbox(dir_name.rstrip("/"), visible=False)
tabname_box = gr.Textbox(tabname, visible=False)
image_index = gr.Textbox(value=-1, visible=False)
set_index = gr.Button('set_index', elem_id=tabname + "_images_history_set_index", visible=False)
filenames = gr.State()
hidden = gr.Image(type="pil", visible=False)
info1 = gr.Textbox(visible=False)
info2 = gr.Textbox(visible=False)
# turn pages
gallery_inputs = [img_path, page_index, image_index, tabname_box]
gallery_outputs = [history_gallery, page_index, filenames, img_file_name, hidden, img_file_name]
# turn pages
gallery_inputs = [img_path, page_index, image_index, tabname_box]
gallery_outputs = [history_gallery, page_index, filenames, img_file_name, hidden, img_file_name]
first_page.click(first_page_click, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
next_page.click(next_page_click, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
prev_page.click(prev_page_click, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
end_page.click(end_page_click, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
page_index.submit(page_index_change, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
renew_page.click(page_index_change, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
# page_index.change(page_index_change, inputs=[tabname_box, img_path, page_index], outputs=[history_gallery, page_index])
# other funcitons
set_index.click(show_image_info, _js="images_history_get_current_img", inputs=[tabname_box, img_path, filenames], outputs=[img_file_name, image_index, hidden])
img_file_name.change(fn=None, _js="images_history_enable_del_buttons", inputs=None, outputs=None)
delete.click(delete_image, _js="images_history_delete", inputs=[delete_num, tabname_box, img_path, img_file_name, page_index, filenames, image_index], outputs=[filenames, delete_num])
hidden.change(fn=run_pnginfo, inputs=[hidden], outputs=[info1, img_file_info, info2])
# pnginfo.click(fn=run_pnginfo, inputs=[hidden], outputs=[info1, img_file_info, info2])
switch_dict["fn"](pnginfo_send_to_txt2img, switch_dict["t2i"], img_file_info, 'switch_to_txt2img')
switch_dict["fn"](pnginfo_send_to_img2img, switch_dict["i2i"], img_file_info, 'switch_to_img2img_img2img')
first_page.click(first_page_click, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
next_page.click(next_page_click, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
prev_page.click(prev_page_click, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
end_page.click(end_page_click, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
page_index.submit(page_index_change, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
renew_page.click(page_index_change, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
#page_index.change(page_index_change, inputs=[tabname_box, img_path, page_index], outputs=[history_gallery, page_index])
#other funcitons
set_index.click(show_image_info, _js="images_history_get_current_img", inputs=[tabname_box, img_path, filenames], outputs=[img_file_name, image_index, hidden])
img_file_name.change(fn=None, _js="images_history_enable_del_buttons", inputs=None, outputs=None)
delete.click(delete_image,_js="images_history_delete", inputs=[delete_num, tabname_box, img_path, img_file_name, page_index, filenames, image_index], outputs=[filenames, delete_num])
hidden.change(fn=run_pnginfo, inputs=[hidden], outputs=[info1, img_file_info, info2])
#pnginfo.click(fn=run_pnginfo, inputs=[hidden], outputs=[info1, img_file_info, info2])
switch_dict["fn"](pnginfo_send_to_txt2img, switch_dict["t2i"], img_file_info, 'switch_to_txt2img')
switch_dict["fn"](pnginfo_send_to_img2img, switch_dict["i2i"], img_file_info, 'switch_to_img2img_img2img')
def create_history_tabs(gr, opts, run_pnginfo, switch_dict):
with gr.Blocks(analytics_enabled=False) as images_history:
with gr.Tabs() as tabs:
with gr.Tab("txt2img history"):
with gr.Blocks(analytics_enabled=False) as images_history_txt2img:
show_images_history(gr, opts, "txt2img", run_pnginfo, switch_dict)
with gr.Blocks(analytics_enabled=False) as images_history_txt2img:
show_images_history(gr, opts, "txt2img", run_pnginfo, switch_dict)
with gr.Tab("img2img history"):
with gr.Blocks(analytics_enabled=False) as images_history_img2img:
show_images_history(gr, opts, "img2img", run_pnginfo, switch_dict)

View File

@ -140,7 +140,7 @@ class Processed:
self.sampler_noise_scheduler_override = p.sampler_noise_scheduler_override
self.prompt = self.prompt if type(self.prompt) != list else self.prompt[0]
self.negative_prompt = self.negative_prompt if type(self.negative_prompt) != list else self.negative_prompt[0]
self.seed = int(self.seed if type(self.seed) != list else self.seed[0])
self.seed = int(self.seed if type(self.seed) != list else self.seed[0]) if self.seed is not None else -1
self.subseed = int(self.subseed if type(self.subseed) != list else self.subseed[0]) if self.subseed is not None else -1
self.all_prompts = all_prompts or [self.prompt]

View File

@ -24,11 +24,12 @@ class DatasetEntry:
class PersonalizedBase(Dataset):
def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None, include_cond=False):
re_word = re.compile(shared.opts.dataset_filename_word_regex) if len(shared.opts.dataset_filename_word_regex)>0 else None
def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None, include_cond=False, batch_size=1):
re_word = re.compile(shared.opts.dataset_filename_word_regex) if len(shared.opts.dataset_filename_word_regex) > 0 else None
self.placeholder_token = placeholder_token
self.batch_size = batch_size
self.width = width
self.height = height
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
@ -78,14 +79,14 @@ class PersonalizedBase(Dataset):
if include_cond:
entry.cond_text = self.create_text(filename_text)
entry.cond = cond_model([entry.cond_text]).to(devices.cpu)
entry.cond = cond_model([entry.cond_text]).to(devices.cpu).squeeze(0)
self.dataset.append(entry)
assert len(self.dataset) > 1, "No images have been found in the dataset."
self.length = len(self.dataset) * repeats
self.initial_indexes = np.arange(self.length) % len(self.dataset)
assert len(self.dataset) > 1, "No images have been found in the dataset."
self.length = len(self.dataset) * repeats // batch_size
self.initial_indexes = np.arange(len(self.dataset))
self.indexes = None
self.shuffle()
@ -102,13 +103,19 @@ class PersonalizedBase(Dataset):
return self.length
def __getitem__(self, i):
if i % len(self.dataset) == 0:
self.shuffle()
res = []
index = self.indexes[i % len(self.indexes)]
entry = self.dataset[index]
for j in range(self.batch_size):
position = i * self.batch_size + j
if position % len(self.indexes) == 0:
self.shuffle()
if entry.cond is None:
entry.cond_text = self.create_text(entry.filename_text)
index = self.indexes[position % len(self.indexes)]
entry = self.dataset[index]
return entry
if entry.cond is None:
entry.cond_text = self.create_text(entry.filename_text)
res.append(entry)
return res

View File

@ -199,7 +199,7 @@ def write_loss(log_directory, filename, step, epoch_len, values):
})
def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
assert embedding_name, 'embedding not selected'
shared.state.textinfo = "Initializing textual inversion training..."
@ -231,7 +231,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
with torch.autocast("cuda"):
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file)
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file, batch_size=batch_size)
hijack = sd_hijack.model_hijack
@ -251,7 +251,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate)
pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step)
for i, entry in pbar:
for i, entries in pbar:
embedding.step = i + ititial_step
scheduler.apply(optimizer, embedding.step)
@ -262,10 +262,9 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
break
with torch.autocast("cuda"):
c = cond_model([entry.cond_text])
x = entry.latent.to(devices.device)
loss = shared.sd_model(x.unsqueeze(0), c)[0]
c = cond_model([entry.cond_text for entry in entries])
x = torch.stack([entry.latent for entry in entries]).to(devices.device)
loss = shared.sd_model(x, c)[0]
del x
losses[embedding.step % losses.shape[0]] = loss.item()
@ -307,7 +306,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
p.width = preview_width
p.height = preview_height
else:
p.prompt = entry.cond_text
p.prompt = entries[0].cond_text
p.steps = 20
p.width = training_width
p.height = training_height
@ -348,7 +347,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
<p>
Loss: {losses.mean():.7f}<br/>
Step: {embedding.step}<br/>
Last prompt: {html.escape(entry.cond_text)}<br/>
Last prompt: {html.escape(entries[0].cond_text)}<br/>
Last saved embedding: {html.escape(last_saved_file)}<br/>
Last saved image: {html.escape(last_saved_image)}<br/>
</p>

View File

@ -433,7 +433,10 @@ def create_toprow(is_img2img):
with gr.Row():
with gr.Column(scale=80):
with gr.Row():
prompt = gr.Textbox(label="Prompt", elem_id=f"{id_part}_prompt", show_label=False, placeholder="Prompt", lines=2)
prompt = gr.Textbox(label="Prompt", elem_id=f"{id_part}_prompt", show_label=False, lines=2,
placeholder="Prompt (press Ctrl+Enter or Alt+Enter to generate)"
)
with gr.Column(scale=1, elem_id="roll_col"):
roll = gr.Button(value=art_symbol, elem_id="roll", visible=len(shared.artist_db.artists) > 0)
paste = gr.Button(value=paste_symbol, elem_id="paste")
@ -446,7 +449,10 @@ def create_toprow(is_img2img):
with gr.Row():
with gr.Column(scale=8):
with gr.Row():
negative_prompt = gr.Textbox(label="Negative prompt", elem_id="negative_prompt", show_label=False, placeholder="Negative prompt", lines=2)
negative_prompt = gr.Textbox(label="Negative prompt", elem_id=f"{id_part}_neg_prompt", show_label=False, lines=2,
placeholder="Negative prompt (press Ctrl+Enter or Alt+Enter to generate)"
)
with gr.Column(scale=1, elem_id="roll_col"):
sh = gr.Button(elem_id="sh", visible=True)
@ -567,8 +573,8 @@ def create_ui(wrap_gradio_gpu_call):
enable_hr = gr.Checkbox(label='Highres. fix', value=False)
with gr.Row(visible=False) as hr_options:
firstphase_width = gr.Slider(minimum=0, maximum=1024, step=64, label="First pass width", value=0)
firstphase_height = gr.Slider(minimum=0, maximum=1024, step=64, label="First pass height", value=0)
firstphase_width = gr.Slider(minimum=0, maximum=1024, step=64, label="Firstpass width", value=0)
firstphase_height = gr.Slider(minimum=0, maximum=1024, step=64, label="Firstpass height", value=0)
denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.7)
with gr.Row(equal_height=True):
@ -1090,7 +1096,7 @@ def create_ui(wrap_gradio_gpu_call):
"i2i":img2img_paste_fields
}
#images_history = img_his.create_history_tabs(gr, opts, wrap_gradio_call(modules.extras.run_pnginfo), images_history_switch_dict)
images_history = img_his.create_history_tabs(gr, opts, wrap_gradio_call(modules.extras.run_pnginfo), images_history_switch_dict)
with gr.Blocks() as modelmerger_interface:
with gr.Row().style(equal_height=False):
@ -1166,6 +1172,7 @@ def create_ui(wrap_gradio_gpu_call):
train_embedding_name = gr.Dropdown(label='Embedding', choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys()))
train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', choices=[x for x in shared.hypernetworks.keys()])
learn_rate = gr.Textbox(label='Learning rate', placeholder="Learning rate", value="0.005")
batch_size = gr.Number(label='Batch size', value=1, precision=0)
dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images")
log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion")
template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt"))
@ -1244,6 +1251,7 @@ def create_ui(wrap_gradio_gpu_call):
inputs=[
train_embedding_name,
learn_rate,
batch_size,
dataset_directory,
log_directory,
training_width,
@ -1268,6 +1276,7 @@ def create_ui(wrap_gradio_gpu_call):
inputs=[
train_hypernetwork_name,
learn_rate,
batch_size,
dataset_directory,
log_directory,
steps,
@ -1487,7 +1496,7 @@ Requested path was: {f}
(img2img_interface, "img2img", "img2img"),
(extras_interface, "Extras", "extras"),
(pnginfo_interface, "PNG Info", "pnginfo"),
#(images_history, "History", "images_history"),
(images_history, "History", "images_history"),
(modelmerger_interface, "Checkpoint Merger", "modelmerger"),
(train_interface, "Train", "ti"),
(settings_interface, "Settings", "settings"),

View File

@ -50,9 +50,9 @@ document.addEventListener("DOMContentLoaded", function() {
document.addEventListener('keydown', function(e) {
var handled = false;
if (e.key !== undefined) {
if((e.key == "Enter" && (e.metaKey || e.ctrlKey))) handled = true;
if((e.key == "Enter" && (e.metaKey || e.ctrlKey || e.altKey))) handled = true;
} else if (e.keyCode !== undefined) {
if((e.keyCode == 13 && (e.metaKey || e.ctrlKey))) handled = true;
if((e.keyCode == 13 && (e.metaKey || e.ctrlKey || e.altKey))) handled = true;
}
if (handled) {
button = get_uiCurrentTabContent().querySelector('button[id$=_generate]');