diff --git a/modules/textual_inversion/autocrop.py b/modules/textual_inversion/autocrop.py new file mode 100644 index 00000000..9859974a --- /dev/null +++ b/modules/textual_inversion/autocrop.py @@ -0,0 +1,341 @@ +import cv2 +import requests +import os +from collections import defaultdict +from math import log, sqrt +import numpy as np +from PIL import Image, ImageDraw + +GREEN = "#0F0" +BLUE = "#00F" +RED = "#F00" + + +def crop_image(im, settings): + """ Intelligently crop an image to the subject matter """ + + scale_by = 1 + if is_landscape(im.width, im.height): + scale_by = settings.crop_height / im.height + elif is_portrait(im.width, im.height): + scale_by = settings.crop_width / im.width + elif is_square(im.width, im.height): + if is_square(settings.crop_width, settings.crop_height): + scale_by = settings.crop_width / im.width + elif is_landscape(settings.crop_width, settings.crop_height): + scale_by = settings.crop_width / im.width + elif is_portrait(settings.crop_width, settings.crop_height): + scale_by = settings.crop_height / im.height + + im = im.resize((int(im.width * scale_by), int(im.height * scale_by))) + im_debug = im.copy() + + focus = focal_point(im_debug, settings) + + # take the focal point and turn it into crop coordinates that try to center over the focal + # point but then get adjusted back into the frame + y_half = int(settings.crop_height / 2) + x_half = int(settings.crop_width / 2) + + x1 = focus.x - x_half + if x1 < 0: + x1 = 0 + elif x1 + settings.crop_width > im.width: + x1 = im.width - settings.crop_width + + y1 = focus.y - y_half + if y1 < 0: + y1 = 0 + elif y1 + settings.crop_height > im.height: + y1 = im.height - settings.crop_height + + x2 = x1 + settings.crop_width + y2 = y1 + settings.crop_height + + crop = [x1, y1, x2, y2] + + results = [] + + results.append(im.crop(tuple(crop))) + + if settings.annotate_image: + d = ImageDraw.Draw(im_debug) + rect = list(crop) + rect[2] -= 1 + rect[3] -= 1 + d.rectangle(rect, outline=GREEN) + results.append(im_debug) + if settings.destop_view_image: + im_debug.show() + + return results + +def focal_point(im, settings): + corner_points = image_corner_points(im, settings) if settings.corner_points_weight > 0 else [] + entropy_points = image_entropy_points(im, settings) if settings.entropy_points_weight > 0 else [] + face_points = image_face_points(im, settings) if settings.face_points_weight > 0 else [] + + pois = [] + + weight_pref_total = 0 + if len(corner_points) > 0: + weight_pref_total += settings.corner_points_weight + if len(entropy_points) > 0: + weight_pref_total += settings.entropy_points_weight + if len(face_points) > 0: + weight_pref_total += settings.face_points_weight + + corner_centroid = None + if len(corner_points) > 0: + corner_centroid = centroid(corner_points) + corner_centroid.weight = settings.corner_points_weight / weight_pref_total + pois.append(corner_centroid) + + entropy_centroid = None + if len(entropy_points) > 0: + entropy_centroid = centroid(entropy_points) + entropy_centroid.weight = settings.entropy_points_weight / weight_pref_total + pois.append(entropy_centroid) + + face_centroid = None + if len(face_points) > 0: + face_centroid = centroid(face_points) + face_centroid.weight = settings.face_points_weight / weight_pref_total + pois.append(face_centroid) + + average_point = poi_average(pois, settings) + + if settings.annotate_image: + d = ImageDraw.Draw(im) + max_size = min(im.width, im.height) * 0.07 + if corner_centroid is not None: + color = BLUE + box = corner_centroid.bounding(max_size * corner_centroid.weight) + d.text((box[0], box[1]-15), "Edge: %.02f" % corner_centroid.weight, fill=color) + d.ellipse(box, outline=color) + if len(corner_points) > 1: + for f in corner_points: + d.rectangle(f.bounding(4), outline=color) + if entropy_centroid is not None: + color = "#ff0" + box = entropy_centroid.bounding(max_size * entropy_centroid.weight) + d.text((box[0], box[1]-15), "Entropy: %.02f" % entropy_centroid.weight, fill=color) + d.ellipse(box, outline=color) + if len(entropy_points) > 1: + for f in entropy_points: + d.rectangle(f.bounding(4), outline=color) + if face_centroid is not None: + color = RED + box = face_centroid.bounding(max_size * face_centroid.weight) + d.text((box[0], box[1]-15), "Face: %.02f" % face_centroid.weight, fill=color) + d.ellipse(box, outline=color) + if len(face_points) > 1: + for f in face_points: + d.rectangle(f.bounding(4), outline=color) + + d.ellipse(average_point.bounding(max_size), outline=GREEN) + + return average_point + + +def image_face_points(im, settings): + if settings.dnn_model_path is not None: + detector = cv2.FaceDetectorYN.create( + settings.dnn_model_path, + "", + (im.width, im.height), + 0.9, # score threshold + 0.3, # nms threshold + 5000 # keep top k before nms + ) + faces = detector.detect(np.array(im)) + results = [] + if faces[1] is not None: + for face in faces[1]: + x = face[0] + y = face[1] + w = face[2] + h = face[3] + results.append( + PointOfInterest( + int(x + (w * 0.5)), # face focus left/right is center + int(y + (h * 0.33)), # face focus up/down is close to the top of the head + size = w, + weight = 1/len(faces[1]) + ) + ) + return results + else: + np_im = np.array(im) + gray = cv2.cvtColor(np_im, cv2.COLOR_BGR2GRAY) + + tries = [ + [ f'{cv2.data.haarcascades}haarcascade_eye.xml', 0.01 ], + [ f'{cv2.data.haarcascades}haarcascade_frontalface_default.xml', 0.05 ], + [ f'{cv2.data.haarcascades}haarcascade_profileface.xml', 0.05 ], + [ f'{cv2.data.haarcascades}haarcascade_frontalface_alt.xml', 0.05 ], + [ f'{cv2.data.haarcascades}haarcascade_frontalface_alt2.xml', 0.05 ], + [ f'{cv2.data.haarcascades}haarcascade_frontalface_alt_tree.xml', 0.05 ], + [ f'{cv2.data.haarcascades}haarcascade_eye_tree_eyeglasses.xml', 0.05 ], + [ f'{cv2.data.haarcascades}haarcascade_upperbody.xml', 0.05 ] + ] + for t in tries: + classifier = cv2.CascadeClassifier(t[0]) + minsize = int(min(im.width, im.height) * t[1]) # at least N percent of the smallest side + try: + faces = classifier.detectMultiScale(gray, scaleFactor=1.1, + minNeighbors=7, minSize=(minsize, minsize), flags=cv2.CASCADE_SCALE_IMAGE) + except: + continue + + if len(faces) > 0: + rects = [[f[0], f[1], f[0] + f[2], f[1] + f[3]] for f in faces] + return [PointOfInterest((r[0] +r[2]) // 2, (r[1] + r[3]) // 2, size=abs(r[0]-r[2]), weight=1/len(rects)) for r in rects] + return [] + + +def image_corner_points(im, settings): + grayscale = im.convert("L") + + # naive attempt at preventing focal points from collecting at watermarks near the bottom + gd = ImageDraw.Draw(grayscale) + gd.rectangle([0, im.height*.9, im.width, im.height], fill="#999") + + np_im = np.array(grayscale) + + points = cv2.goodFeaturesToTrack( + np_im, + maxCorners=100, + qualityLevel=0.04, + minDistance=min(grayscale.width, grayscale.height)*0.06, + useHarrisDetector=False, + ) + + if points is None: + return [] + + focal_points = [] + for point in points: + x, y = point.ravel() + focal_points.append(PointOfInterest(x, y, size=4, weight=1/len(points))) + + return focal_points + + +def image_entropy_points(im, settings): + landscape = im.height < im.width + portrait = im.height > im.width + if landscape: + move_idx = [0, 2] + move_max = im.size[0] + elif portrait: + move_idx = [1, 3] + move_max = im.size[1] + else: + return [] + + e_max = 0 + crop_current = [0, 0, settings.crop_width, settings.crop_height] + crop_best = crop_current + while crop_current[move_idx[1]] < move_max: + crop = im.crop(tuple(crop_current)) + e = image_entropy(crop) + + if (e > e_max): + e_max = e + crop_best = list(crop_current) + + crop_current[move_idx[0]] += 4 + crop_current[move_idx[1]] += 4 + + x_mid = int(crop_best[0] + settings.crop_width/2) + y_mid = int(crop_best[1] + settings.crop_height/2) + + return [PointOfInterest(x_mid, y_mid, size=25, weight=1.0)] + + +def image_entropy(im): + # greyscale image entropy + # band = np.asarray(im.convert("L")) + band = np.asarray(im.convert("1"), dtype=np.uint8) + hist, _ = np.histogram(band, bins=range(0, 256)) + hist = hist[hist > 0] + return -np.log2(hist / hist.sum()).sum() + +def centroid(pois): + x = [poi.x for poi in pois] + y = [poi.y for poi in pois] + return PointOfInterest(sum(x)/len(pois), sum(y)/len(pois)) + + +def poi_average(pois, settings): + weight = 0.0 + x = 0.0 + y = 0.0 + for poi in pois: + weight += poi.weight + x += poi.x * poi.weight + y += poi.y * poi.weight + avg_x = round(x / weight) + avg_y = round(y / weight) + + return PointOfInterest(avg_x, avg_y) + + +def is_landscape(w, h): + return w > h + + +def is_portrait(w, h): + return h > w + + +def is_square(w, h): + return w == h + + +def download_and_cache_models(dirname): + download_url = 'https://github.com/opencv/opencv_zoo/blob/91fb0290f50896f38a0ab1e558b74b16bc009428/models/face_detection_yunet/face_detection_yunet_2022mar.onnx?raw=true' + model_file_name = 'face_detection_yunet.onnx' + + if not os.path.exists(dirname): + os.makedirs(dirname) + + cache_file = os.path.join(dirname, model_file_name) + if not os.path.exists(cache_file): + print(f"downloading face detection model from '{download_url}' to '{cache_file}'") + response = requests.get(download_url) + with open(cache_file, "wb") as f: + f.write(response.content) + + if os.path.exists(cache_file): + return cache_file + return None + + +class PointOfInterest: + def __init__(self, x, y, weight=1.0, size=10): + self.x = x + self.y = y + self.weight = weight + self.size = size + + def bounding(self, size): + return [ + self.x - size//2, + self.y - size//2, + self.x + size//2, + self.y + size//2 + ] + + +class Settings: + def __init__(self, crop_width=512, crop_height=512, corner_points_weight=0.5, entropy_points_weight=0.5, face_points_weight=0.5, annotate_image=False, dnn_model_path=None): + self.crop_width = crop_width + self.crop_height = crop_height + self.corner_points_weight = corner_points_weight + self.entropy_points_weight = entropy_points_weight + self.face_points_weight = face_points_weight + self.annotate_image = annotate_image + self.destop_view_image = False + self.dnn_model_path = dnn_model_path \ No newline at end of file diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index 33eaddb6..e13b1894 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -7,12 +7,14 @@ import tqdm import time from modules import shared, images +from modules.paths import models_path from modules.shared import opts, cmd_opts +from modules.textual_inversion import autocrop if cmd_opts.deepdanbooru: import modules.deepbooru as deepbooru -def preprocess(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2): +def preprocess(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2, process_focal_crop=False, process_focal_crop_face_weight=0.9, process_focal_crop_entropy_weight=0.3, process_focal_crop_edges_weight=0.5, process_focal_crop_debug=False): try: if process_caption: shared.interrogator.load() @@ -22,7 +24,7 @@ def preprocess(process_src, process_dst, process_width, process_height, preproce db_opts[deepbooru.OPT_INCLUDE_RANKS] = False deepbooru.create_deepbooru_process(opts.interrogate_deepbooru_score_threshold, db_opts) - preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru, split_threshold, overlap_ratio) + preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru, split_threshold, overlap_ratio, process_focal_crop, process_focal_crop_face_weight, process_focal_crop_entropy_weight, process_focal_crop_edges_weight, process_focal_crop_debug) finally: @@ -34,7 +36,7 @@ def preprocess(process_src, process_dst, process_width, process_height, preproce -def preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2): +def preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2, process_focal_crop=False, process_focal_crop_face_weight=0.9, process_focal_crop_entropy_weight=0.3, process_focal_crop_edges_weight=0.5, process_focal_crop_debug=False): width = process_width height = process_height src = os.path.abspath(process_src) @@ -113,6 +115,7 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pre splitted = image.crop((0, y, to_w, y + to_h)) yield splitted + for index, imagefile in enumerate(tqdm.tqdm(files)): subindex = [0] filename = os.path.join(src, imagefile) @@ -137,11 +140,36 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pre ratio = (img.height * width) / (img.width * height) inverse_xy = True + process_default_resize = True + if process_split and ratio < 1.0 and ratio <= split_threshold: for splitted in split_pic(img, inverse_xy): save_pic(splitted, index, existing_caption=existing_caption) - else: + process_default_resize = False + + if process_focal_crop and img.height != img.width: + + dnn_model_path = None + try: + dnn_model_path = autocrop.download_and_cache_models(os.path.join(models_path, "opencv")) + except Exception as e: + print("Unable to load face detection model for auto crop selection. Falling back to lower quality haar method.", e) + + autocrop_settings = autocrop.Settings( + crop_width = width, + crop_height = height, + face_points_weight = process_focal_crop_face_weight, + entropy_points_weight = process_focal_crop_entropy_weight, + corner_points_weight = process_focal_crop_edges_weight, + annotate_image = process_focal_crop_debug, + dnn_model_path = dnn_model_path, + ) + for focal in autocrop.crop_image(img, autocrop_settings): + save_pic(focal, index, existing_caption=existing_caption) + process_default_resize = False + + if process_default_resize: img = images.resize_image(1, img, width, height) save_pic(img, index, existing_caption=existing_caption) - shared.state.nextjob() + shared.state.nextjob() \ No newline at end of file diff --git a/modules/ui.py b/modules/ui.py index 8e343258..0a63e357 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1261,6 +1261,7 @@ def create_ui(wrap_gradio_gpu_call): with gr.Row(): process_flip = gr.Checkbox(label='Create flipped copies') process_split = gr.Checkbox(label='Split oversized images') + process_focal_crop = gr.Checkbox(label='Auto focal point crop') process_caption = gr.Checkbox(label='Use BLIP for caption') process_caption_deepbooru = gr.Checkbox(label='Use deepbooru for caption', visible=True if cmd_opts.deepdanbooru else False) @@ -1268,6 +1269,12 @@ def create_ui(wrap_gradio_gpu_call): process_split_threshold = gr.Slider(label='Split image threshold', value=0.5, minimum=0.0, maximum=1.0, step=0.05) process_overlap_ratio = gr.Slider(label='Split image overlap ratio', value=0.2, minimum=0.0, maximum=0.9, step=0.05) + with gr.Row(visible=False) as process_focal_crop_row: + process_focal_crop_face_weight = gr.Slider(label='Focal point face weight', value=0.9, minimum=0.0, maximum=1.0, step=0.05) + process_focal_crop_entropy_weight = gr.Slider(label='Focal point entropy weight', value=0.15, minimum=0.0, maximum=1.0, step=0.05) + process_focal_crop_edges_weight = gr.Slider(label='Focal point edges weight', value=0.5, minimum=0.0, maximum=1.0, step=0.05) + process_focal_crop_debug = gr.Checkbox(label='Create debug image') + with gr.Row(): with gr.Column(scale=3): gr.HTML(value="") @@ -1281,6 +1288,12 @@ def create_ui(wrap_gradio_gpu_call): outputs=[process_split_extra_row], ) + process_focal_crop.change( + fn=lambda show: gr_show(show), + inputs=[process_focal_crop], + outputs=[process_focal_crop_row], + ) + with gr.Tab(label="Train"): gr.HTML(value="
Train an embedding or Hypernetwork; you must specify a directory with a set of 1:1 ratio images [wiki]
") with gr.Row(): @@ -1369,6 +1382,11 @@ def create_ui(wrap_gradio_gpu_call): process_caption_deepbooru, process_split_threshold, process_overlap_ratio, + process_focal_crop, + process_focal_crop_face_weight, + process_focal_crop_entropy_weight, + process_focal_crop_edges_weight, + process_focal_crop_debug, ], outputs=[ ti_output, diff --git a/requirements.txt b/requirements.txt index da1969cf..75b37c4f 100644 --- a/requirements.txt +++ b/requirements.txt @@ -8,6 +8,8 @@ gradio==3.5 invisible-watermark numpy omegaconf +opencv-python +requests piexif Pillow pytorch_lightning