prompt editing
This commit is contained in:
parent
b28cf84c36
commit
f2693bec08
|
@ -12,7 +12,7 @@ import cv2
|
|||
from skimage import exposure
|
||||
|
||||
import modules.sd_hijack
|
||||
from modules import devices
|
||||
from modules import devices, prompt_parser
|
||||
from modules.sd_hijack import model_hijack
|
||||
from modules.sd_samplers import samplers, samplers_for_img2img
|
||||
from modules.shared import opts, cmd_opts, state
|
||||
|
@ -247,8 +247,10 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
|||
seeds = all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
|
||||
subseeds = all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
|
||||
|
||||
uc = p.sd_model.get_learned_conditioning(len(prompts) * [p.negative_prompt])
|
||||
c = p.sd_model.get_learned_conditioning(prompts)
|
||||
#uc = p.sd_model.get_learned_conditioning(len(prompts) * [p.negative_prompt])
|
||||
#c = p.sd_model.get_learned_conditioning(prompts)
|
||||
uc = prompt_parser.get_learned_conditioning(len(prompts) * [p.negative_prompt], p.steps)
|
||||
c = prompt_parser.get_learned_conditioning(prompts, p.steps)
|
||||
|
||||
if len(model_hijack.comments) > 0:
|
||||
for comment in model_hijack.comments:
|
||||
|
|
128
modules/prompt_parser.py
Normal file
128
modules/prompt_parser.py
Normal file
|
@ -0,0 +1,128 @@
|
|||
import re
|
||||
from collections import namedtuple
|
||||
import torch
|
||||
|
||||
import modules.shared as shared
|
||||
|
||||
re_prompt = re.compile(r'''
|
||||
(.*?)
|
||||
\[
|
||||
([^]:]+):
|
||||
(?:([^]:]*):)?
|
||||
([0-9]*\.?[0-9]+)
|
||||
]
|
||||
|
|
||||
(.+)
|
||||
''', re.X)
|
||||
|
||||
# a prompt like this: "fantasy landscape with a [mountain:lake:0.25] and [an oak:a christmas tree:0.75][ in foreground::0.6][ in background:0.25] [shoddy:masterful:0.5]"
|
||||
# will be represented with prompt_schedule like this (assuming steps=100):
|
||||
# [25, 'fantasy landscape with a mountain and an oak in foreground shoddy']
|
||||
# [50, 'fantasy landscape with a lake and an oak in foreground in background shoddy']
|
||||
# [60, 'fantasy landscape with a lake and an oak in foreground in background masterful']
|
||||
# [75, 'fantasy landscape with a lake and an oak in background masterful']
|
||||
# [100, 'fantasy landscape with a lake and a christmas tree in background masterful']
|
||||
|
||||
|
||||
def get_learned_conditioning_prompt_schedules(prompts, steps):
|
||||
res = []
|
||||
cache = {}
|
||||
|
||||
for prompt in prompts:
|
||||
prompt_schedule: list[list[str | int]] = [[steps, ""]]
|
||||
|
||||
cached = cache.get(prompt, None)
|
||||
if cached is not None:
|
||||
res.append(cached)
|
||||
|
||||
for m in re_prompt.finditer(prompt):
|
||||
plaintext = m.group(1) if m.group(5) is None else m.group(5)
|
||||
concept_from = m.group(2)
|
||||
concept_to = m.group(3)
|
||||
if concept_to is None:
|
||||
concept_to = concept_from
|
||||
concept_from = ""
|
||||
swap_position = float(m.group(4)) if m.group(4) is not None else None
|
||||
|
||||
if swap_position is not None:
|
||||
if swap_position < 1:
|
||||
swap_position = swap_position * steps
|
||||
swap_position = int(min(swap_position, steps))
|
||||
|
||||
swap_index = None
|
||||
found_exact_index = False
|
||||
for i in range(len(prompt_schedule)):
|
||||
end_step = prompt_schedule[i][0]
|
||||
prompt_schedule[i][1] += plaintext
|
||||
|
||||
if swap_position is not None and swap_index is None:
|
||||
if swap_position == end_step:
|
||||
swap_index = i
|
||||
found_exact_index = True
|
||||
|
||||
if swap_position < end_step:
|
||||
swap_index = i
|
||||
|
||||
if swap_index is not None:
|
||||
if not found_exact_index:
|
||||
prompt_schedule.insert(swap_index, [swap_position, prompt_schedule[swap_index][1]])
|
||||
|
||||
for i in range(len(prompt_schedule)):
|
||||
end_step = prompt_schedule[i][0]
|
||||
must_replace = swap_position < end_step
|
||||
|
||||
prompt_schedule[i][1] += concept_to if must_replace else concept_from
|
||||
|
||||
res.append(prompt_schedule)
|
||||
cache[prompt] = prompt_schedule
|
||||
#for t in prompt_schedule:
|
||||
# print(t)
|
||||
|
||||
return res
|
||||
|
||||
|
||||
ScheduledPromptConditioning = namedtuple("ScheduledPromptConditioning", ["end_at_step", "cond"])
|
||||
ScheduledPromptBatch = namedtuple("ScheduledPromptBatch", ["shape", "schedules"])
|
||||
|
||||
|
||||
def get_learned_conditioning(prompts, steps):
|
||||
|
||||
res = []
|
||||
|
||||
prompt_schedules = get_learned_conditioning_prompt_schedules(prompts, steps)
|
||||
cache = {}
|
||||
|
||||
for prompt, prompt_schedule in zip(prompts, prompt_schedules):
|
||||
|
||||
cached = cache.get(prompt, None)
|
||||
if cached is not None:
|
||||
res.append(cached)
|
||||
|
||||
texts = [x[1] for x in prompt_schedule]
|
||||
conds = shared.sd_model.get_learned_conditioning(texts)
|
||||
|
||||
cond_schedule = []
|
||||
for i, (end_at_step, text) in enumerate(prompt_schedule):
|
||||
cond_schedule.append(ScheduledPromptConditioning(end_at_step, conds[i]))
|
||||
|
||||
cache[prompt] = cond_schedule
|
||||
res.append(cond_schedule)
|
||||
|
||||
return ScheduledPromptBatch((len(prompts),) + res[0][0].cond.shape, res)
|
||||
|
||||
|
||||
def reconstruct_cond_batch(c: ScheduledPromptBatch, current_step):
|
||||
res = torch.zeros(c.shape)
|
||||
for i, cond_schedule in enumerate(c.schedules):
|
||||
target_index = 0
|
||||
for curret_index, (end_at, cond) in enumerate(cond_schedule):
|
||||
if current_step <= end_at:
|
||||
target_index = curret_index
|
||||
break
|
||||
res[i] = cond_schedule[target_index].cond
|
||||
|
||||
return res.to(shared.device)
|
||||
|
||||
|
||||
|
||||
#get_learned_conditioning_prompt_schedules(["fantasy landscape with a [mountain:lake:0.25] and [an oak:a christmas tree:0.75][ in foreground::0.6][ in background:0.25] [shoddy:masterful:0.5]"], 100)
|
|
@ -7,6 +7,7 @@ from PIL import Image
|
|||
import k_diffusion.sampling
|
||||
import ldm.models.diffusion.ddim
|
||||
import ldm.models.diffusion.plms
|
||||
from modules import prompt_parser
|
||||
|
||||
from modules.shared import opts, cmd_opts, state
|
||||
import modules.shared as shared
|
||||
|
@ -53,20 +54,6 @@ def store_latent(decoded):
|
|||
shared.state.current_image = sample_to_image(decoded)
|
||||
|
||||
|
||||
def p_sample_ddim_hook(sampler_wrapper, x_dec, cond, ts, *args, **kwargs):
|
||||
if sampler_wrapper.mask is not None:
|
||||
img_orig = sampler_wrapper.sampler.model.q_sample(sampler_wrapper.init_latent, ts)
|
||||
x_dec = img_orig * sampler_wrapper.mask + sampler_wrapper.nmask * x_dec
|
||||
|
||||
res = sampler_wrapper.orig_p_sample_ddim(x_dec, cond, ts, *args, **kwargs)
|
||||
|
||||
if sampler_wrapper.mask is not None:
|
||||
store_latent(sampler_wrapper.init_latent * sampler_wrapper.mask + sampler_wrapper.nmask * res[1])
|
||||
else:
|
||||
store_latent(res[1])
|
||||
|
||||
return res
|
||||
|
||||
|
||||
def extended_tdqm(sequence, *args, desc=None, **kwargs):
|
||||
state.sampling_steps = len(sequence)
|
||||
|
@ -93,6 +80,25 @@ class VanillaStableDiffusionSampler:
|
|||
self.mask = None
|
||||
self.nmask = None
|
||||
self.init_latent = None
|
||||
self.step = 0
|
||||
|
||||
def p_sample_ddim_hook(self, x_dec, cond, ts, unconditional_conditioning, *args, **kwargs):
|
||||
cond = prompt_parser.reconstruct_cond_batch(cond, self.step)
|
||||
unconditional_conditioning = prompt_parser.reconstruct_cond_batch(unconditional_conditioning, self.step)
|
||||
|
||||
if self.mask is not None:
|
||||
img_orig = self.sampler.model.q_sample(self.init_latent, ts)
|
||||
x_dec = img_orig * self.mask + self.nmask * x_dec
|
||||
|
||||
res = self.orig_p_sample_ddim(x_dec, cond, ts, unconditional_conditioning=unconditional_conditioning, *args, **kwargs)
|
||||
|
||||
if self.mask is not None:
|
||||
store_latent(self.init_latent * self.mask + self.nmask * res[1])
|
||||
else:
|
||||
store_latent(res[1])
|
||||
|
||||
self.step += 1
|
||||
return res
|
||||
|
||||
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning):
|
||||
t_enc = int(min(p.denoising_strength, 0.999) * p.steps)
|
||||
|
@ -105,7 +111,7 @@ class VanillaStableDiffusionSampler:
|
|||
|
||||
x1 = self.sampler.stochastic_encode(x, torch.tensor([t_enc] * int(x.shape[0])).to(shared.device), noise=noise)
|
||||
|
||||
self.sampler.p_sample_ddim = lambda x_dec, cond, ts, *args, **kwargs: p_sample_ddim_hook(self, x_dec, cond, ts, *args, **kwargs)
|
||||
self.sampler.p_sample_ddim = self.p_sample_ddim_hook
|
||||
self.mask = p.mask
|
||||
self.nmask = p.nmask
|
||||
self.init_latent = p.init_latent
|
||||
|
@ -117,7 +123,7 @@ class VanillaStableDiffusionSampler:
|
|||
def sample(self, p, x, conditioning, unconditional_conditioning):
|
||||
for fieldname in ['p_sample_ddim', 'p_sample_plms']:
|
||||
if hasattr(self.sampler, fieldname):
|
||||
setattr(self.sampler, fieldname, lambda x_dec, cond, ts, *args, **kwargs: p_sample_ddim_hook(self, x_dec, cond, ts, *args, **kwargs))
|
||||
setattr(self.sampler, fieldname, self.p_sample_ddim_hook)
|
||||
self.mask = None
|
||||
self.nmask = None
|
||||
self.init_latent = None
|
||||
|
@ -138,8 +144,12 @@ class CFGDenoiser(torch.nn.Module):
|
|||
self.mask = None
|
||||
self.nmask = None
|
||||
self.init_latent = None
|
||||
self.step = 0
|
||||
|
||||
def forward(self, x, sigma, uncond, cond, cond_scale):
|
||||
cond = prompt_parser.reconstruct_cond_batch(cond, self.step)
|
||||
uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step)
|
||||
|
||||
if shared.batch_cond_uncond:
|
||||
x_in = torch.cat([x] * 2)
|
||||
sigma_in = torch.cat([sigma] * 2)
|
||||
|
@ -154,6 +164,8 @@ class CFGDenoiser(torch.nn.Module):
|
|||
if self.mask is not None:
|
||||
denoised = self.init_latent * self.mask + self.nmask * denoised
|
||||
|
||||
self.step += 1
|
||||
|
||||
return denoised
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user