Fix loss calculations

This commit is contained in:
dan 2023-01-21 22:58:30 +08:00
parent 90bc57da51
commit f4f070a548
2 changed files with 15 additions and 16 deletions

View File

@ -595,8 +595,8 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi
if clip_grad:
clip_grad_sched.step(hypernetwork.step)
def get_loss(batch):
with devices.autocast():
for batch in superbatch:
x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
if tag_drop_out != 0 or shuffle_tags:
shared.sd_model.cond_stage_model.to(devices.device)
@ -604,10 +604,9 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi
shared.sd_model.cond_stage_model.to(devices.cpu)
else:
c = stack_conds(batch.cond).to(devices.device, non_blocking=pin_memory)
loss = shared.sd_model(x, c)[0] / gradient_step * len(batch) / batch_size
del x
del c
return shared.sd_model(x, c)[0] / gradient_step * len(batch) / batch_size
loss = sum(get_loss(batch) for batch in superbatch)
_loss_step += loss.item()
scaler.scale(loss).backward()
@ -683,7 +682,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi
p.width = preview_width
p.height = preview_height
else:
p.prompt = batch.cond_text[0]
p.prompt = superbatch[0].cond_text[0]
p.steps = 20
p.width = training_width
p.height = training_height
@ -715,7 +714,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi
<p>
Loss: {loss_step:.7f}<br/>
Step: {steps_done}<br/>
Last prompt: {html.escape(batch.cond_text[0])}<br/>
Last prompt: {html.escape(superbatch[0].cond_text[0])}<br/>
Last saved hypernetwork: {html.escape(last_saved_file)}<br/>
Last saved image: {html.escape(last_saved_image)}<br/>
</p>

View File

@ -472,8 +472,8 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st
if clip_grad:
clip_grad_sched.step(embedding.step)
def get_loss(batch):
with devices.autocast():
for batch in superbatch:
x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
c = shared.sd_model.cond_stage_model(batch.cond_text)
@ -485,9 +485,9 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st
else:
cond = c
loss = shared.sd_model(x, cond)[0] / gradient_step * len(batch) / batch_size
del x
return shared.sd_model(x, cond)[0] / gradient_step * len(batch) / batch_size
loss = sum(get_loss(batch) for batch in superbatch)
_loss_step += loss.item()
scaler.scale(loss).backward()
@ -548,7 +548,7 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st
p.width = preview_width
p.height = preview_height
else:
p.prompt = batch.cond_text[0]
p.prompt = superbatch[0].cond_text[0]
p.steps = 20
p.width = training_width
p.height = training_height
@ -605,7 +605,7 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st
<p>
Loss: {loss_step:.7f}<br/>
Step: {steps_done}<br/>
Last prompt: {html.escape(batch.cond_text[0])}<br/>
Last prompt: {html.escape(superbatch[0].cond_text[0])}<br/>
Last saved embedding: {html.escape(last_saved_file)}<br/>
Last saved image: {html.escape(last_saved_image)}<br/>
</p>