Merge remote-tracking branch 'upstream/master' into PowerShell

This commit is contained in:
d8ahazard 2023-01-01 09:46:23 -06:00
commit fbdc89c9b1
40 changed files with 897 additions and 208 deletions

View File

@ -0,0 +1,72 @@
model:
base_learning_rate: 1.0e-04
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.00085
linear_end: 0.0120
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: "jpg"
cond_stage_key: "txt"
image_size: 64
channels: 4
cond_stage_trainable: false # Note: different from the one we trained before
conditioning_key: crossattn
monitor: val/loss_simple_ema
scale_factor: 0.18215
use_ema: False
scheduler_config: # 10000 warmup steps
target: ldm.lr_scheduler.LambdaLinearScheduler
params:
warm_up_steps: [ 10000 ]
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
f_start: [ 1.e-6 ]
f_max: [ 1. ]
f_min: [ 1. ]
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 32 # unused
in_channels: 4
out_channels: 4
model_channels: 320
attention_resolutions: [ 4, 2, 1 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
num_heads: 8
use_spatial_transformer: True
transformer_depth: 1
context_dim: 768
use_checkpoint: True
legacy: False
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: modules.xlmr.BertSeriesModelWithTransformation
params:
name: "XLMR-Large"

View File

@ -26,7 +26,7 @@ class LDSR:
global cached_ldsr_model
if shared.opts.ldsr_cached and cached_ldsr_model is not None:
print(f"Loading model from cache")
print("Loading model from cache")
model: torch.nn.Module = cached_ldsr_model
else:
print(f"Loading model from {self.modelPath}")

View File

@ -0,0 +1,50 @@
import random
from modules import script_callbacks, shared
import gradio as gr
art_symbol = '\U0001f3a8' # 🎨
global_prompt = None
related_ids = {"txt2img_prompt", "txt2img_clear_prompt", "img2img_prompt", "img2img_clear_prompt" }
def roll_artist(prompt):
allowed_cats = set([x for x in shared.artist_db.categories() if len(shared.opts.random_artist_categories)==0 or x in shared.opts.random_artist_categories])
artist = random.choice([x for x in shared.artist_db.artists if x.category in allowed_cats])
return prompt + ", " + artist.name if prompt != '' else artist.name
def add_roll_button(prompt):
roll = gr.Button(value=art_symbol, elem_id="roll", visible=len(shared.artist_db.artists) > 0)
roll.click(
fn=roll_artist,
_js="update_txt2img_tokens",
inputs=[
prompt,
],
outputs=[
prompt,
]
)
def after_component(component, **kwargs):
global global_prompt
elem_id = kwargs.get('elem_id', None)
if elem_id not in related_ids:
return
if elem_id == "txt2img_prompt":
global_prompt = component
elif elem_id == "txt2img_clear_prompt":
add_roll_button(global_prompt)
elif elem_id == "img2img_prompt":
global_prompt = component
elif elem_id == "img2img_clear_prompt":
add_roll_button(global_prompt)
script_callbacks.on_after_component(after_component)

View File

@ -97,7 +97,10 @@ titles = {
"Learning rate": "how fast should the training go. Low values will take longer to train, high values may fail to converge (not generate accurate results) and/or may break the embedding (This has happened if you see Loss: nan in the training info textbox. If this happens, you need to manually restore your embedding from an older not-broken backup).\n\nYou can set a single numeric value, or multiple learning rates using the syntax:\n\n rate_1:max_steps_1, rate_2:max_steps_2, ...\n\nEG: 0.005:100, 1e-3:1000, 1e-5\n\nWill train with rate of 0.005 for first 100 steps, then 1e-3 until 1000 steps, then 1e-5 for all remaining steps.",
"Clip skip": "Early stopping parameter for CLIP model; 1 is stop at last layer as usual, 2 is stop at penultimate layer, etc."
"Clip skip": "Early stopping parameter for CLIP model; 1 is stop at last layer as usual, 2 is stop at penultimate layer, etc.",
"Approx NN": "Cheap neural network approximation. Very fast compared to VAE, but produces pictures with 4 times smaller horizontal/vertical resoluton and lower quality.",
"Approx cheap": "Very cheap approximation. Very fast compared to VAE, but produces pictures with 8 times smaller horizontal/vertical resoluton and extremely low quality."
}

BIN
models/VAE-approx/model.pt Normal file

Binary file not shown.

View File

@ -10,13 +10,17 @@ from fastapi.security import HTTPBasic, HTTPBasicCredentials
from secrets import compare_digest
import modules.shared as shared
from modules import sd_samplers, deepbooru
from modules import sd_samplers, deepbooru, sd_hijack
from modules.api.models import *
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
from modules.extras import run_extras, run_pnginfo
from modules.textual_inversion.textual_inversion import create_embedding, train_embedding
from modules.textual_inversion.preprocess import preprocess
from modules.hypernetworks.hypernetwork import create_hypernetwork, train_hypernetwork
from PIL import PngImagePlugin,Image
from modules.sd_models import checkpoints_list
from modules.realesrgan_model import get_realesrgan_models
from modules import devices
from typing import List
def upscaler_to_index(name: str):
@ -97,6 +101,11 @@ class Api:
self.add_api_route("/sdapi/v1/artist-categories", self.get_artists_categories, methods=["GET"], response_model=List[str])
self.add_api_route("/sdapi/v1/artists", self.get_artists, methods=["GET"], response_model=List[ArtistItem])
self.add_api_route("/sdapi/v1/refresh-checkpoints", self.refresh_checkpoints, methods=["POST"])
self.add_api_route("/sdapi/v1/create/embedding", self.create_embedding, methods=["POST"], response_model=CreateResponse)
self.add_api_route("/sdapi/v1/create/hypernetwork", self.create_hypernetwork, methods=["POST"], response_model=CreateResponse)
self.add_api_route("/sdapi/v1/preprocess", self.preprocess, methods=["POST"], response_model=PreprocessResponse)
self.add_api_route("/sdapi/v1/train/embedding", self.train_embedding, methods=["POST"], response_model=TrainResponse)
self.add_api_route("/sdapi/v1/train/hypernetwork", self.train_hypernetwork, methods=["POST"], response_model=TrainResponse)
def add_api_route(self, path: str, endpoint, **kwargs):
if shared.cmd_opts.api_auth:
@ -112,7 +121,6 @@ class Api:
def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
populate = txt2imgreq.copy(update={ # Override __init__ params
"sd_model": shared.sd_model,
"sampler_name": validate_sampler_name(txt2imgreq.sampler_name or txt2imgreq.sampler_index),
"do_not_save_samples": True,
"do_not_save_grid": True
@ -120,15 +128,14 @@ class Api:
)
if populate.sampler_name:
populate.sampler_index = None # prevent a warning later on
p = StableDiffusionProcessingTxt2Img(**vars(populate))
# Override object param
shared.state.begin()
with self.queue_lock:
processed = process_images(p)
p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **vars(populate))
shared.state.begin()
processed = process_images(p)
shared.state.end()
shared.state.end()
b64images = list(map(encode_pil_to_base64, processed.images))
@ -144,7 +151,6 @@ class Api:
mask = decode_base64_to_image(mask)
populate = img2imgreq.copy(update={ # Override __init__ params
"sd_model": shared.sd_model,
"sampler_name": validate_sampler_name(img2imgreq.sampler_name or img2imgreq.sampler_index),
"do_not_save_samples": True,
"do_not_save_grid": True,
@ -156,16 +162,14 @@ class Api:
args = vars(populate)
args.pop('include_init_images', None) # this is meant to be done by "exclude": True in model, but it's for a reason that I cannot determine.
p = StableDiffusionProcessingImg2Img(**args)
p.init_images = [decode_base64_to_image(x) for x in init_images]
shared.state.begin()
with self.queue_lock:
processed = process_images(p)
p = StableDiffusionProcessingImg2Img(sd_model=shared.sd_model, **args)
p.init_images = [decode_base64_to_image(x) for x in init_images]
shared.state.end()
shared.state.begin()
processed = process_images(p)
shared.state.end()
b64images = list(map(encode_pil_to_base64, processed.images))
@ -326,6 +330,89 @@ class Api:
def refresh_checkpoints(self):
shared.refresh_checkpoints()
def create_embedding(self, args: dict):
try:
shared.state.begin()
filename = create_embedding(**args) # create empty embedding
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings() # reload embeddings so new one can be immediately used
shared.state.end()
return CreateResponse(info = "create embedding filename: {filename}".format(filename = filename))
except AssertionError as e:
shared.state.end()
return TrainResponse(info = "create embedding error: {error}".format(error = e))
def create_hypernetwork(self, args: dict):
try:
shared.state.begin()
filename = create_hypernetwork(**args) # create empty embedding
shared.state.end()
return CreateResponse(info = "create hypernetwork filename: {filename}".format(filename = filename))
except AssertionError as e:
shared.state.end()
return TrainResponse(info = "create hypernetwork error: {error}".format(error = e))
def preprocess(self, args: dict):
try:
shared.state.begin()
preprocess(**args) # quick operation unless blip/booru interrogation is enabled
shared.state.end()
return PreprocessResponse(info = 'preprocess complete')
except KeyError as e:
shared.state.end()
return PreprocessResponse(info = "preprocess error: invalid token: {error}".format(error = e))
except AssertionError as e:
shared.state.end()
return PreprocessResponse(info = "preprocess error: {error}".format(error = e))
except FileNotFoundError as e:
shared.state.end()
return PreprocessResponse(info = 'preprocess error: {error}'.format(error = e))
def train_embedding(self, args: dict):
try:
shared.state.begin()
apply_optimizations = shared.opts.training_xattention_optimizations
error = None
filename = ''
if not apply_optimizations:
sd_hijack.undo_optimizations()
try:
embedding, filename = train_embedding(**args) # can take a long time to complete
except Exception as e:
error = e
finally:
if not apply_optimizations:
sd_hijack.apply_optimizations()
shared.state.end()
return TrainResponse(info = "train embedding complete: filename: {filename} error: {error}".format(filename = filename, error = error))
except AssertionError as msg:
shared.state.end()
return TrainResponse(info = "train embedding error: {msg}".format(msg = msg))
def train_hypernetwork(self, args: dict):
try:
shared.state.begin()
initial_hypernetwork = shared.loaded_hypernetwork
apply_optimizations = shared.opts.training_xattention_optimizations
error = None
filename = ''
if not apply_optimizations:
sd_hijack.undo_optimizations()
try:
hypernetwork, filename = train_hypernetwork(*args)
except Exception as e:
error = e
finally:
shared.loaded_hypernetwork = initial_hypernetwork
shared.sd_model.cond_stage_model.to(devices.device)
shared.sd_model.first_stage_model.to(devices.device)
if not apply_optimizations:
sd_hijack.apply_optimizations()
shared.state.end()
return TrainResponse(info = "train embedding complete: filename: {filename} error: {error}".format(filename = filename, error = error))
except AssertionError as msg:
shared.state.end()
return TrainResponse(info = "train embedding error: {error}".format(error = error))
def launch(self, server_name, port):
self.app.include_router(self.router)
uvicorn.run(self.app, host=server_name, port=port)

View File

@ -175,6 +175,15 @@ class InterrogateRequest(BaseModel):
class InterrogateResponse(BaseModel):
caption: str = Field(default=None, title="Caption", description="The generated caption for the image.")
class TrainResponse(BaseModel):
info: str = Field(title="Train info", description="Response string from train embedding or hypernetwork task.")
class CreateResponse(BaseModel):
info: str = Field(title="Create info", description="Response string from create embedding or hypernetwork task.")
class PreprocessResponse(BaseModel):
info: str = Field(title="Preprocess info", description="Response string from preprocessing task.")
fields = {}
for key, metadata in opts.data_labels.items():
value = opts.data.get(key)

View File

@ -382,7 +382,7 @@ class VQAutoEncoder(nn.Module):
self.load_state_dict(torch.load(model_path, map_location='cpu')['params'])
logger.info(f'vqgan is loaded from: {model_path} [params]')
else:
raise ValueError(f'Wrong params!')
raise ValueError('Wrong params!')
def forward(self, x):
@ -431,7 +431,7 @@ class VQGANDiscriminator(nn.Module):
elif 'params' in chkpt:
self.load_state_dict(torch.load(model_path, map_location='cpu')['params'])
else:
raise ValueError(f'Wrong params!')
raise ValueError('Wrong params!')
def forward(self, x):
return self.main(x)

View File

@ -38,7 +38,7 @@ def quote(text):
def image_from_url_text(filedata):
if type(filedata) == dict and filedata["is_file"]:
filename = filedata["name"]
is_in_right_dir = any(Path(temp_dir).resolve() in Path(filename).resolve().parents for temp_dir in shared.demo.temp_dirs)
is_in_right_dir = any([filename in fileset for fileset in shared.demo.temp_file_sets])
assert is_in_right_dir, 'trying to open image file outside of allowed directories'
return Image.open(filename)

View File

@ -277,7 +277,7 @@ def load_hypernetwork(filename):
print(traceback.format_exc(), file=sys.stderr)
else:
if shared.loaded_hypernetwork is not None:
print(f"Unloading hypernetwork")
print("Unloading hypernetwork")
shared.loaded_hypernetwork = None
@ -378,6 +378,32 @@ def report_statistics(loss_info:dict):
print(e)
def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False):
# Remove illegal characters from name.
name = "".join( x for x in name if (x.isalnum() or x in "._- "))
fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
if not overwrite_old:
assert not os.path.exists(fn), f"file {fn} already exists"
if type(layer_structure) == str:
layer_structure = [float(x.strip()) for x in layer_structure.split(",")]
hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(
name=name,
enable_sizes=[int(x) for x in enable_sizes],
layer_structure=layer_structure,
activation_func=activation_func,
weight_init=weight_init,
add_layer_norm=add_layer_norm,
use_dropout=use_dropout,
)
hypernet.save(fn)
shared.reload_hypernetworks()
return fn
def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, steps, shuffle_tags, tag_drop_out, latent_sampling_method, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
# images allows training previews to have infotext. Importing it at the top causes a circular import problem.
@ -417,7 +443,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step,
initial_step = hypernetwork.step or 0
if initial_step >= steps:
shared.state.textinfo = f"Model has already been trained beyond specified max steps"
shared.state.textinfo = "Model has already been trained beyond specified max steps"
return hypernetwork, filename
scheduler = LearnRateScheduler(learn_rate, steps, initial_step)

View File

@ -3,39 +3,16 @@ import os
import re
import gradio as gr
import modules.textual_inversion.preprocess
import modules.textual_inversion.textual_inversion
import modules.hypernetworks.hypernetwork
from modules import devices, sd_hijack, shared
from modules.hypernetworks import hypernetwork
not_available = ["hardswish", "multiheadattention"]
keys = list(x for x in hypernetwork.HypernetworkModule.activation_dict.keys() if x not in not_available)
keys = list(x for x in modules.hypernetworks.hypernetwork.HypernetworkModule.activation_dict.keys() if x not in not_available)
def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False):
# Remove illegal characters from name.
name = "".join( x for x in name if (x.isalnum() or x in "._- "))
filename = modules.hypernetworks.hypernetwork.create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure, activation_func, weight_init, add_layer_norm, use_dropout)
fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
if not overwrite_old:
assert not os.path.exists(fn), f"file {fn} already exists"
if type(layer_structure) == str:
layer_structure = [float(x.strip()) for x in layer_structure.split(",")]
hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(
name=name,
enable_sizes=[int(x) for x in enable_sizes],
layer_structure=layer_structure,
activation_func=activation_func,
weight_init=weight_init,
add_layer_norm=add_layer_norm,
use_dropout=use_dropout,
)
hypernet.save(fn)
shared.reload_hypernetworks()
return gr.Dropdown.update(choices=sorted([x for x in shared.hypernetworks.keys()])), f"Created: {fn}", ""
return gr.Dropdown.update(choices=sorted([x for x in shared.hypernetworks.keys()])), f"Created: {filename}", ""
def train_hypernetwork(*args):

View File

@ -39,11 +39,14 @@ def image_grid(imgs, batch_size=1, rows=None):
cols = math.ceil(len(imgs) / rows)
w, h = imgs[0].size
grid = Image.new('RGB', size=(cols * w, rows * h), color='black')
params = script_callbacks.ImageGridLoopParams(imgs, cols, rows)
script_callbacks.image_grid_callback(params)
for i, img in enumerate(imgs):
grid.paste(img, box=(i % cols * w, i // cols * h))
w, h = imgs[0].size
grid = Image.new('RGB', size=(params.cols * w, params.rows * h), color='black')
for i, img in enumerate(params.imgs):
grid.paste(img, box=(i % params.cols * w, i // params.cols * h))
return grid
@ -525,6 +528,9 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
image_to_save.save(temp_file_path, format=image_format, quality=opts.jpeg_quality, pnginfo=pnginfo_data)
elif extension.lower() in (".jpg", ".jpeg", ".webp"):
if image_to_save.mode == 'RGBA':
image_to_save = image_to_save.convert("RGB")
image_to_save.save(temp_file_path, format=image_format, quality=opts.jpeg_quality)
if opts.enable_pnginfo and info is not None:
@ -599,7 +605,7 @@ def read_info_from_image(image):
Negative prompt: {json_info["uc"]}
Steps: {json_info["steps"]}, Sampler: {sampler}, CFG scale: {json_info["scale"]}, Seed: {json_info["seed"]}, Size: {image.width}x{image.height}, Clip skip: 2, ENSD: 31337"""
except Exception:
print(f"Error parsing NovelAI image generation parameters:", file=sys.stderr)
print("Error parsing NovelAI image generation parameters:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
return geninfo, items

View File

@ -162,4 +162,4 @@ def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, pro
if opts.do_not_show_images:
processed.images = []
return processed.images, generation_info_js, plaintext_to_html(processed.info)
return processed.images, generation_info_js, plaintext_to_html(processed.info), plaintext_to_html(processed.comments)

View File

@ -135,7 +135,7 @@ class InterrogateModels:
return caption[0]
def interrogate(self, pil_image):
res = None
res = ""
try:
@ -172,7 +172,7 @@ class InterrogateModels:
res += ", " + match
except Exception:
print(f"Error interrogating", file=sys.stderr)
print("Error interrogating", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
res += "<error>"

View File

@ -71,10 +71,13 @@ class MemUsageMonitor(threading.Thread):
def read(self):
if not self.disabled:
free, total = torch.cuda.mem_get_info()
self.data["free"] = free
self.data["total"] = total
torch_stats = torch.cuda.memory_stats(self.device)
self.data["active"] = torch_stats["active.all.current"]
self.data["active_peak"] = torch_stats["active_bytes.all.peak"]
self.data["reserved"] = torch_stats["reserved_bytes.all.current"]
self.data["reserved_peak"] = torch_stats["reserved_bytes.all.peak"]
self.data["system_peak"] = total - self.data["min_free"]

View File

@ -239,7 +239,7 @@ class StableDiffusionProcessing():
class Processed:
def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_negative_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None):
def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_negative_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None, comments=""):
self.images = images_list
self.prompt = p.prompt
self.negative_prompt = p.negative_prompt
@ -247,6 +247,7 @@ class Processed:
self.subseed = subseed
self.subseed_strength = p.subseed_strength
self.info = info
self.comments = comments
self.width = p.width
self.height = p.height
self.sampler_name = p.sampler_name
@ -338,13 +339,14 @@ def slerp(val, low, high):
def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0, p=None):
eta_noise_seed_delta = opts.eta_noise_seed_delta or 0
xs = []
# if we have multiple seeds, this means we are working with batch size>1; this then
# enables the generation of additional tensors with noise that the sampler will use during its processing.
# Using those pre-generated tensors instead of simple torch.randn allows a batch with seeds [100, 101] to
# produce the same images as with two batches [100], [101].
if p is not None and p.sampler is not None and (len(seeds) > 1 and opts.enable_batch_seeds or opts.eta_noise_seed_delta > 0):
if p is not None and p.sampler is not None and (len(seeds) > 1 and opts.enable_batch_seeds or eta_noise_seed_delta > 0):
sampler_noises = [[] for _ in range(p.sampler.number_of_needed_noises(p))]
else:
sampler_noises = None
@ -384,8 +386,8 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see
if sampler_noises is not None:
cnt = p.sampler.number_of_needed_noises(p)
if opts.eta_noise_seed_delta > 0:
torch.manual_seed(seed + opts.eta_noise_seed_delta)
if eta_noise_seed_delta > 0:
torch.manual_seed(seed + eta_noise_seed_delta)
for j in range(cnt):
sampler_noises[j].append(devices.randn_without_seed(tuple(noise_shape)))
@ -645,7 +647,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
devices.torch_gc()
res = Processed(p, output_images, p.all_seeds[0], infotext() + "".join(["\n\n" + x for x in comments]), subseed=p.all_subseeds[0], index_of_first_image=index_of_first_image, infotexts=infotexts)
res = Processed(p, output_images, p.all_seeds[0], infotext(), comments="".join(["\n\n" + x for x in comments]), subseed=p.all_subseeds[0], index_of_first_image=index_of_first_image, infotexts=infotexts)
if p.scripts is not None:
p.scripts.postprocess(p, res)

View File

@ -103,7 +103,7 @@ def check_pt(filename, extra_handler):
def load(filename, *args, **kwargs):
return load_with_extra(filename, *args, **kwargs)
return load_with_extra(filename, extra_handler=global_extra_handler, *args, **kwargs)
def load_with_extra(filename, extra_handler=None, *args, **kwargs):
@ -137,19 +137,56 @@ def load_with_extra(filename, extra_handler=None, *args, **kwargs):
except pickle.UnpicklingError:
print(f"Error verifying pickled file from {filename}:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
print(f"-----> !!!! The file is most likely corrupted !!!! <-----", file=sys.stderr)
print(f"You can skip this check with --disable-safe-unpickle commandline argument, but that is not going to help you.\n\n", file=sys.stderr)
print("-----> !!!! The file is most likely corrupted !!!! <-----", file=sys.stderr)
print("You can skip this check with --disable-safe-unpickle commandline argument, but that is not going to help you.\n\n", file=sys.stderr)
return None
except Exception:
print(f"Error verifying pickled file from {filename}:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
print(f"\nThe file may be malicious, so the program is not going to read it.", file=sys.stderr)
print(f"You can skip this check with --disable-safe-unpickle commandline argument.\n\n", file=sys.stderr)
print("\nThe file may be malicious, so the program is not going to read it.", file=sys.stderr)
print("You can skip this check with --disable-safe-unpickle commandline argument.\n\n", file=sys.stderr)
return None
return unsafe_torch_load(filename, *args, **kwargs)
class Extra:
"""
A class for temporarily setting the global handler for when you can't explicitly call load_with_extra
(because it's not your code making the torch.load call). The intended use is like this:
```
import torch
from modules import safe
def handler(module, name):
if module == 'torch' and name in ['float64', 'float16']:
return getattr(torch, name)
return None
with safe.Extra(handler):
x = torch.load('model.pt')
```
"""
def __init__(self, handler):
self.handler = handler
def __enter__(self):
global global_extra_handler
assert global_extra_handler is None, 'already inside an Extra() block'
global_extra_handler = self.handler
def __exit__(self, exc_type, exc_val, exc_tb):
global global_extra_handler
global_extra_handler = None
unsafe_torch_load = torch.load
torch.load = load
global_extra_handler = None

View File

@ -51,6 +51,13 @@ class UiTrainTabParams:
self.txt2img_preview_params = txt2img_preview_params
class ImageGridLoopParams:
def __init__(self, imgs, cols, rows):
self.imgs = imgs
self.cols = cols
self.rows = rows
ScriptCallback = namedtuple("ScriptCallback", ["script", "callback"])
callback_map = dict(
callbacks_app_started=[],
@ -63,6 +70,7 @@ callback_map = dict(
callbacks_cfg_denoiser=[],
callbacks_before_component=[],
callbacks_after_component=[],
callbacks_image_grid=[],
)
@ -155,6 +163,14 @@ def after_component_callback(component, **kwargs):
report_exception(c, 'after_component_callback')
def image_grid_callback(params: ImageGridLoopParams):
for c in callback_map['callbacks_image_grid']:
try:
c.callback(params)
except Exception:
report_exception(c, 'image_grid')
def add_callback(callbacks, fun):
stack = [x for x in inspect.stack() if x.filename != __file__]
filename = stack[0].filename if len(stack) > 0 else 'unknown file'
@ -255,3 +271,11 @@ def on_before_component(callback):
def on_after_component(callback):
"""register a function to be called after a component is created. See on_before_component for more."""
add_callback(callback_map['callbacks_after_component'], callback)
def on_image_grid(callback):
"""register a function to be called before making an image grid.
The callback is called with one argument:
- params: ImageGridLoopParams - parameters to be used for grid creation. Can be modified.
"""
add_callback(callback_map['callbacks_image_grid'], callback)

View File

@ -5,7 +5,7 @@ import modules.textual_inversion.textual_inversion
from modules import devices, sd_hijack_optimizations, shared, sd_hijack_checkpoint
from modules.hypernetworks import hypernetwork
from modules.shared import cmd_opts
from modules import sd_hijack_clip, sd_hijack_open_clip, sd_hijack_unet
from modules import sd_hijack_clip, sd_hijack_open_clip, sd_hijack_unet, sd_hijack_xlmr, xlmr
from modules.sd_hijack_optimizations import invokeAI_mps_available
@ -68,6 +68,7 @@ def fix_checkpoint():
ldm.modules.diffusionmodules.openaimodel.ResBlock.forward = sd_hijack_checkpoint.ResBlock_forward
ldm.modules.diffusionmodules.openaimodel.AttentionBlock.forward = sd_hijack_checkpoint.AttentionBlock_forward
class StableDiffusionModelHijack:
fixes = None
comments = []
@ -78,17 +79,25 @@ class StableDiffusionModelHijack:
embedding_db = modules.textual_inversion.textual_inversion.EmbeddingDatabase(cmd_opts.embeddings_dir)
def hijack(self, m):
if type(m.cond_stage_model) == ldm.modules.encoders.modules.FrozenCLIPEmbedder:
if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation:
model_embeddings = m.cond_stage_model.roberta.embeddings
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.word_embeddings, self)
m.cond_stage_model = sd_hijack_xlmr.FrozenXLMREmbedderWithCustomWords(m.cond_stage_model, self)
elif type(m.cond_stage_model) == ldm.modules.encoders.modules.FrozenCLIPEmbedder:
model_embeddings = m.cond_stage_model.transformer.text_model.embeddings
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.token_embedding, self)
m.cond_stage_model = sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords(m.cond_stage_model, self)
elif type(m.cond_stage_model) == ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder:
m.cond_stage_model.model.token_embedding = EmbeddingsWithFixes(m.cond_stage_model.model.token_embedding, self)
m.cond_stage_model = sd_hijack_open_clip.FrozenOpenCLIPEmbedderWithCustomWords(m.cond_stage_model, self)
self.clip = m.cond_stage_model
apply_optimizations()
self.clip = m.cond_stage_model
fix_checkpoint()
def flatten(el):
@ -101,7 +110,11 @@ class StableDiffusionModelHijack:
self.layers = flatten(m)
def undo_hijack(self, m):
if type(m.cond_stage_model) == sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords:
if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation:
m.cond_stage_model = m.cond_stage_model.wrapped
elif type(m.cond_stage_model) == sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords:
m.cond_stage_model = m.cond_stage_model.wrapped
model_embeddings = m.cond_stage_model.transformer.text_model.embeddings
@ -129,8 +142,8 @@ class StableDiffusionModelHijack:
def tokenize(self, text):
_, remade_batch_tokens, _, _, _, token_count = self.clip.process_text([text])
return remade_batch_tokens[0], token_count, sd_hijack_clip.get_target_prompt_token_count(token_count)
return remade_batch_tokens[0], token_count, sd_hijack_clip.get_target_prompt_token_count(token_count)
class EmbeddingsWithFixes(torch.nn.Module):

View File

@ -5,7 +5,6 @@ import torch
from modules import prompt_parser, devices
from modules.shared import opts
def get_target_prompt_token_count(token_count):
return math.ceil(max(token_count, 1) / 75) * 75
@ -254,10 +253,13 @@ class FrozenCLIPEmbedderWithCustomWords(FrozenCLIPEmbedderWithCustomWordsBase):
def __init__(self, wrapped, hijack):
super().__init__(wrapped, hijack)
self.tokenizer = wrapped.tokenizer
self.comma_token = [v for k, v in self.tokenizer.get_vocab().items() if k == ',</w>'][0]
vocab = self.tokenizer.get_vocab()
self.comma_token = vocab.get(',</w>', None)
self.token_mults = {}
tokens_with_parens = [(k, v) for k, v in self.tokenizer.get_vocab().items() if '(' in k or ')' in k or '[' in k or ']' in k]
tokens_with_parens = [(k, v) for k, v in vocab.items() if '(' in k or ')' in k or '[' in k or ']' in k]
for text, ident in tokens_with_parens:
mult = 1.0
for c in text:
@ -296,6 +298,6 @@ class FrozenCLIPEmbedderWithCustomWords(FrozenCLIPEmbedderWithCustomWordsBase):
def encode_embedding_init_text(self, init_text, nvpt):
embedding_layer = self.wrapped.transformer.text_model.embeddings
ids = self.wrapped.tokenizer(init_text, max_length=nvpt, return_tensors="pt", add_special_tokens=False)["input_ids"]
embedded = embedding_layer.token_embedding.wrapped(ids.to(devices.device)).squeeze(0)
embedded = embedding_layer.token_embedding.wrapped(ids.to(embedding_layer.token_embedding.wrapped.weight.device)).squeeze(0)
return embedded

View File

@ -178,7 +178,7 @@ def sample_plms(self,
# sampling
C, H, W = shape
size = (batch_size, C, H, W)
print(f'Data shape for PLMS sampling is {size}')
# print(f'Data shape for PLMS sampling is {size}') # remove unnecessary message
samples, intermediates = self.plms_sampling(conditioning, size,
callback=callback,

34
modules/sd_hijack_xlmr.py Normal file
View File

@ -0,0 +1,34 @@
import open_clip.tokenizer
import torch
from modules import sd_hijack_clip, devices
from modules.shared import opts
class FrozenXLMREmbedderWithCustomWords(sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords):
def __init__(self, wrapped, hijack):
super().__init__(wrapped, hijack)
self.id_start = wrapped.config.bos_token_id
self.id_end = wrapped.config.eos_token_id
self.id_pad = wrapped.config.pad_token_id
self.comma_token = self.tokenizer.get_vocab().get(',', None) # alt diffusion doesn't have </w> bits for comma
def encode_with_transformers(self, tokens):
# there's no CLIP Skip here because all hidden layers have size of 1024 and the last one uses a
# trained layer to transform those 1024 into 768 for unet; so you can't choose which transformer
# layer to work with - you have to use the last
attention_mask = (tokens != self.id_pad).to(device=tokens.device, dtype=torch.int64)
features = self.wrapped(input_ids=tokens, attention_mask=attention_mask)
z = features['projection_state']
return z
def encode_embedding_init_text(self, init_text, nvpt):
embedding_layer = self.wrapped.roberta.embeddings
ids = self.wrapped.tokenizer(init_text, max_length=nvpt, return_tensors="pt", add_special_tokens=False)["input_ids"]
embedded = embedding_layer.token_embedding.wrapped(ids.to(devices.device)).squeeze(0)
return embedded

View File

@ -117,13 +117,13 @@ def select_checkpoint():
return checkpoint_info
if len(checkpoints_list) == 0:
print(f"No checkpoints found. When searching for checkpoints, looked at:", file=sys.stderr)
print("No checkpoints found. When searching for checkpoints, looked at:", file=sys.stderr)
if shared.cmd_opts.ckpt is not None:
print(f" - file {os.path.abspath(shared.cmd_opts.ckpt)}", file=sys.stderr)
print(f" - directory {model_path}", file=sys.stderr)
if shared.cmd_opts.ckpt_dir is not None:
print(f" - directory {os.path.abspath(shared.cmd_opts.ckpt_dir)}", file=sys.stderr)
print(f"Can't run without a checkpoint. Find and place a .ckpt file into any of those locations. The program will exit.", file=sys.stderr)
print("Can't run without a checkpoint. Find and place a .ckpt file into any of those locations. The program will exit.", file=sys.stderr)
exit(1)
checkpoint_info = next(iter(checkpoints_list.values()))
@ -324,7 +324,10 @@ def load_model(checkpoint_info=None):
script_callbacks.model_loaded_callback(sd_model)
print(f"Model loaded.")
print("Model loaded.")
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings(force_reload = True) # Reload embeddings after model load as they may or may not fit the model
return sd_model
@ -359,5 +362,5 @@ def reload_model_weights(sd_model=None, info=None):
if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
sd_model.to(devices.device)
print(f"Weights loaded.")
print("Weights loaded.")
return sd_model

View File

@ -9,7 +9,7 @@ import k_diffusion.sampling
import torchsde._brownian.brownian_interval
import ldm.models.diffusion.ddim
import ldm.models.diffusion.plms
from modules import prompt_parser, devices, processing, images
from modules import prompt_parser, devices, processing, images, sd_vae_approx
from modules.shared import opts, cmd_opts, state
import modules.shared as shared
@ -106,28 +106,31 @@ def setup_img2img_steps(p, steps=None):
return steps, t_enc
def single_sample_to_image(sample, approximation=False):
if approximation:
# https://discuss.huggingface.co/t/decoding-latents-to-rgb-without-upscaling/23204/2
coefs = torch.tensor(
[[ 0.298, 0.207, 0.208],
[ 0.187, 0.286, 0.173],
[-0.158, 0.189, 0.264],
[-0.184, -0.271, -0.473]]).to(sample.device)
x_sample = torch.einsum("lxy,lr -> rxy", sample, coefs)
approximation_indexes = {"Full": 0, "Approx NN": 1, "Approx cheap": 2}
def single_sample_to_image(sample, approximation=None):
if approximation is None:
approximation = approximation_indexes.get(opts.show_progress_type, 0)
if approximation == 2:
x_sample = sd_vae_approx.cheap_approximation(sample)
elif approximation == 1:
x_sample = sd_vae_approx.model()(sample.to(devices.device, devices.dtype).unsqueeze(0))[0].detach()
else:
x_sample = processing.decode_first_stage(shared.sd_model, sample.unsqueeze(0))[0]
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
x_sample = x_sample.astype(np.uint8)
return Image.fromarray(x_sample)
def sample_to_image(samples, index=0, approximation=False):
def sample_to_image(samples, index=0, approximation=None):
return single_sample_to_image(samples[index], approximation)
def samples_to_image_grid(samples, approximation=False):
def samples_to_image_grid(samples, approximation=None):
return images.image_grid([single_sample_to_image(sample, approximation) for sample in samples])
@ -136,7 +139,7 @@ def store_latent(decoded):
if opts.show_progress_every_n_steps > 0 and shared.state.sampling_step % opts.show_progress_every_n_steps == 0:
if not shared.parallel_processing_allowed:
shared.state.current_image = sample_to_image(decoded, approximation=opts.show_progress_approximate)
shared.state.current_image = sample_to_image(decoded)
class InterruptedException(BaseException):
@ -462,7 +465,9 @@ class KDiffusionSampler:
if p.sampler_noise_scheduler_override:
sigmas = p.sampler_noise_scheduler_override(steps)
elif self.config is not None and self.config.options.get('scheduler', None) == 'karras':
sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=0.1, sigma_max=10, device=shared.device)
sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item())
sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=shared.device)
else:
sigmas = self.model_wrap.get_sigmas(steps)

View File

@ -1,5 +1,6 @@
import torch
import os
import collections
from collections import namedtuple
from modules import shared, devices, script_callbacks
from modules.paths import models_path
@ -30,6 +31,7 @@ base_vae = None
loaded_vae_file = None
checkpoint_info = None
checkpoints_loaded = collections.OrderedDict()
def get_base_vae(model):
if base_vae is not None and checkpoint_info == model.sd_checkpoint_info and model:
@ -149,13 +151,30 @@ def load_vae(model, vae_file=None):
global first_load, vae_dict, vae_list, loaded_vae_file
# save_settings = False
cache_enabled = shared.opts.sd_vae_checkpoint_cache > 0
if vae_file:
assert os.path.isfile(vae_file), f"VAE file doesn't exist: {vae_file}"
print(f"Loading VAE weights from: {vae_file}")
store_base_vae(model)
vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location)
vae_dict_1 = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys}
_load_vae_dict(model, vae_dict_1)
if cache_enabled and vae_file in checkpoints_loaded:
# use vae checkpoint cache
print(f"Loading VAE weights [{get_filename(vae_file)}] from cache")
store_base_vae(model)
_load_vae_dict(model, checkpoints_loaded[vae_file])
else:
assert os.path.isfile(vae_file), f"VAE file doesn't exist: {vae_file}"
print(f"Loading VAE weights from: {vae_file}")
store_base_vae(model)
vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location)
vae_dict_1 = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys}
_load_vae_dict(model, vae_dict_1)
if cache_enabled:
# cache newly loaded vae
checkpoints_loaded[vae_file] = vae_dict_1.copy()
# clean up cache if limit is reached
if cache_enabled:
while len(checkpoints_loaded) > shared.opts.sd_vae_checkpoint_cache + 1: # we need to count the current model
checkpoints_loaded.popitem(last=False) # LRU
# If vae used is not in dict, update it
# It will be removed on refresh though
@ -208,5 +227,5 @@ def reload_vae_weights(sd_model=None, vae_file="auto"):
if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
sd_model.to(devices.device)
print(f"VAE Weights loaded.")
print("VAE Weights loaded.")
return sd_model

58
modules/sd_vae_approx.py Normal file
View File

@ -0,0 +1,58 @@
import os
import torch
from torch import nn
from modules import devices, paths
sd_vae_approx_model = None
class VAEApprox(nn.Module):
def __init__(self):
super(VAEApprox, self).__init__()
self.conv1 = nn.Conv2d(4, 8, (7, 7))
self.conv2 = nn.Conv2d(8, 16, (5, 5))
self.conv3 = nn.Conv2d(16, 32, (3, 3))
self.conv4 = nn.Conv2d(32, 64, (3, 3))
self.conv5 = nn.Conv2d(64, 32, (3, 3))
self.conv6 = nn.Conv2d(32, 16, (3, 3))
self.conv7 = nn.Conv2d(16, 8, (3, 3))
self.conv8 = nn.Conv2d(8, 3, (3, 3))
def forward(self, x):
extra = 11
x = nn.functional.interpolate(x, (x.shape[2] * 2, x.shape[3] * 2))
x = nn.functional.pad(x, (extra, extra, extra, extra))
for layer in [self.conv1, self.conv2, self.conv3, self.conv4, self.conv5, self.conv6, self.conv7, self.conv8, ]:
x = layer(x)
x = nn.functional.leaky_relu(x, 0.1)
return x
def model():
global sd_vae_approx_model
if sd_vae_approx_model is None:
sd_vae_approx_model = VAEApprox()
sd_vae_approx_model.load_state_dict(torch.load(os.path.join(paths.models_path, "VAE-approx", "model.pt")))
sd_vae_approx_model.eval()
sd_vae_approx_model.to(devices.device, devices.dtype)
return sd_vae_approx_model
def cheap_approximation(sample):
# https://discuss.huggingface.co/t/decoding-latents-to-rgb-without-upscaling/23204/2
coefs = torch.tensor([
[0.298, 0.207, 0.208],
[0.187, 0.286, 0.173],
[-0.158, 0.189, 0.264],
[-0.184, -0.271, -0.473],
]).to(sample.device)
x_sample = torch.einsum("lxy,lr -> rxy", sample, coefs)
return x_sample

View File

@ -23,7 +23,7 @@ demo = None
sd_model_file = os.path.join(script_path, 'model.ckpt')
default_sd_model_file = sd_model_file
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default=os.path.join(script_path, "v1-inference.yaml"), help="path to config which constructs model",)
parser.add_argument("--config", type=str, default=os.path.join(script_path, "configs/v1-inference.yaml"), help="path to config which constructs model",)
parser.add_argument("--ckpt", type=str, default=sd_model_file, help="path to checkpoint of stable diffusion model; if specified, this checkpoint will be added to the list of checkpoints and loaded",)
parser.add_argument("--ckpt-dir", type=str, default=None, help="Path to directory with stable diffusion checkpoints")
parser.add_argument("--gfpgan-dir", type=str, help="GFPGAN directory", default=('./src/gfpgan' if os.path.exists('./src/gfpgan') else './GFPGAN'))
@ -168,7 +168,7 @@ class State:
def dict(self):
obj = {
"skipped": self.skipped,
"interrupted": self.skipped,
"interrupted": self.interrupted,
"job": self.job,
"job_count": self.job_count,
"job_no": self.job_no,
@ -212,9 +212,9 @@ class State:
import modules.sd_samplers
if opts.show_progress_grid:
self.current_image = modules.sd_samplers.samples_to_image_grid(self.current_latent, approximation=opts.show_progress_approximate)
self.current_image = modules.sd_samplers.samples_to_image_grid(self.current_latent)
else:
self.current_image = modules.sd_samplers.sample_to_image(self.current_latent, approximation=opts.show_progress_approximate)
self.current_image = modules.sd_samplers.sample_to_image(self.current_latent)
self.current_image_sampling_step = self.sampling_step
@ -356,6 +356,7 @@ options_templates.update(options_section(('training', "Training"), {
options_templates.update(options_section(('sd', "Stable Diffusion"), {
"sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": list_checkpoint_tiles()}, refresh=refresh_checkpoints),
"sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
"sd_vae_checkpoint_cache": OptionInfo(0, "VAE Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
"sd_vae": OptionInfo("auto", "SD VAE", gr.Dropdown, lambda: {"choices": sd_vae.vae_list}, refresh=sd_vae.refresh_vae_list),
"sd_vae_as_default": OptionInfo(False, "Ignore selected VAE for stable diffusion checkpoints that have their own .vae.pt next to them"),
"sd_hypernetwork": OptionInfo("None", "Hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks),
@ -367,13 +368,17 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
"img2img_background_color": OptionInfo("#ffffff", "With img2img, fill image's transparent parts with this color.", gr.ColorPicker, {}),
"enable_quantization": OptionInfo(False, "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply."),
"enable_emphasis": OptionInfo(True, "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention"),
"use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."),
"enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"),
"comma_padding_backtrack": OptionInfo(20, "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1 }),
'CLIP_stop_at_last_layers': OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}),
"random_artist_categories": OptionInfo([], "Allowed categories for random artists selection when using the Roll button", gr.CheckboxGroup, {"choices": artist_db.categories()}),
}))
options_templates.update(options_section(('compatibility', "Compatibility"), {
"use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."),
"use_old_karras_scheduler_sigmas": OptionInfo(False, "Use old karras scheduler sigmas (0.1 to 10)."),
}))
options_templates.update(options_section(('interrogate', "Interrogate Options"), {
"interrogate_keep_models_in_memory": OptionInfo(False, "Interrogate: keep models in VRAM"),
"interrogate_use_builtin_artists": OptionInfo(True, "Interrogate: use artists from artists.csv"),
@ -392,7 +397,7 @@ options_templates.update(options_section(('interrogate', "Interrogate Options"),
options_templates.update(options_section(('ui', "User interface"), {
"show_progressbar": OptionInfo(True, "Show progressbar"),
"show_progress_every_n_steps": OptionInfo(0, "Show image creation progress every N sampling steps. Set to 0 to disable. Set to -1 to show after completion of batch.", gr.Slider, {"minimum": -1, "maximum": 32, "step": 1}),
"show_progress_approximate": OptionInfo(False, "Calculate small previews using fast linear approximation instead of VAE"),
"show_progress_type": OptionInfo("Full", "Image creation progress preview mode", gr.Radio, {"choices": ["Full", "Approx NN", "Approx cheap"]}),
"show_progress_grid": OptionInfo(True, "Show previews of all images generated in a batch as a grid"),
"return_grid": OptionInfo(True, "Show grid in results for web"),
"do_not_show_images": OptionInfo(False, "Do not show any images in results for web"),
@ -405,6 +410,7 @@ options_templates.update(options_section(('ui', "User interface"), {
"js_modal_lightbox": OptionInfo(True, "Enable full page image viewer"),
"js_modal_lightbox_initially_zoomed": OptionInfo(True, "Show images zoomed in by default in full page image viewer"),
"show_progress_in_title": OptionInfo(True, "Show generation progress in window title."),
"samplers_in_dropdown": OptionInfo(True, "Use dropdown for sampler selection instead of radio group"),
'quicksettings': OptionInfo("sd_model_checkpoint", "Quicksettings list"),
'localization': OptionInfo("None", "Localization (requires restart)", gr.Dropdown, lambda: {"choices": ["None"] + list(localization.localizations.keys())}, refresh=lambda: localization.list_localizations(cmd_opts.localizations_dir)),
}))

View File

@ -23,6 +23,8 @@ class Embedding:
self.vec = vec
self.name = name
self.step = step
self.shape = None
self.vectors = 0
self.cached_checksum = None
self.sd_checkpoint = None
self.sd_checkpoint_name = None
@ -57,8 +59,10 @@ class EmbeddingDatabase:
def __init__(self, embeddings_dir):
self.ids_lookup = {}
self.word_embeddings = {}
self.skipped_embeddings = []
self.dir_mtime = None
self.embeddings_dir = embeddings_dir
self.expected_shape = -1
def register_embedding(self, embedding, model):
@ -75,20 +79,24 @@ class EmbeddingDatabase:
return embedding
def load_textual_inversion_embeddings(self):
def get_expected_shape(self):
vec = shared.sd_model.cond_stage_model.encode_embedding_init_text(",", 1)
return vec.shape[1]
def load_textual_inversion_embeddings(self, force_reload = False):
mt = os.path.getmtime(self.embeddings_dir)
if self.dir_mtime is not None and mt <= self.dir_mtime:
if not force_reload and self.dir_mtime is not None and mt <= self.dir_mtime:
return
self.dir_mtime = mt
self.ids_lookup.clear()
self.word_embeddings.clear()
self.skipped_embeddings = []
self.expected_shape = self.get_expected_shape()
def process_file(path, filename):
name = os.path.splitext(filename)[0]
data = []
if os.path.splitext(filename.upper())[-1] in ['.PNG', '.WEBP', '.JXL', '.AVIF']:
embed_image = Image.open(path)
if hasattr(embed_image, 'text') and 'sd-ti-embedding' in embed_image.text:
@ -122,7 +130,13 @@ class EmbeddingDatabase:
embedding.step = data.get('step', None)
embedding.sd_checkpoint = data.get('sd_checkpoint', None)
embedding.sd_checkpoint_name = data.get('sd_checkpoint_name', None)
self.register_embedding(embedding, shared.sd_model)
embedding.vectors = vec.shape[0]
embedding.shape = vec.shape[-1]
if self.expected_shape == -1 or self.expected_shape == embedding.shape:
self.register_embedding(embedding, shared.sd_model)
else:
self.skipped_embeddings.append(name)
for fn in os.listdir(self.embeddings_dir):
try:
@ -137,8 +151,9 @@ class EmbeddingDatabase:
print(traceback.format_exc(), file=sys.stderr)
continue
print(f"Loaded a total of {len(self.word_embeddings)} textual inversion embeddings.")
print("Embeddings:", ', '.join(self.word_embeddings.keys()))
print(f"Textual inversion embeddings loaded({len(self.word_embeddings)}): {', '.join(self.word_embeddings.keys())}")
if len(self.skipped_embeddings) > 0:
print(f"Textual inversion embeddings skipped({len(self.skipped_embeddings)}): {', '.join(self.skipped_embeddings)}")
def find_embedding_at_position(self, tokens, offset):
token = tokens[offset]
@ -263,7 +278,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
initial_step = embedding.step or 0
if initial_step >= steps:
shared.state.textinfo = f"Model has already been trained beyond specified max steps"
shared.state.textinfo = "Model has already been trained beyond specified max steps"
return embedding, filename
scheduler = LearnRateScheduler(learn_rate, steps, initial_step)

View File

@ -59,4 +59,4 @@ def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2:
if opts.do_not_show_images:
processed.images = []
return processed.images, generation_info_js, plaintext_to_html(processed.info)
return processed.images, generation_info_js, plaintext_to_html(processed.info), plaintext_to_html(processed.comments)

View File

@ -19,7 +19,7 @@ import numpy as np
from PIL import Image, PngImagePlugin
from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, wrap_gradio_call
from modules import sd_hijack, sd_models, localization, script_callbacks, ui_extensions, deepbooru
from modules import sd_hijack, sd_models, localization, script_callbacks, ui_extensions, deepbooru, ui_components
from modules.paths import script_path
from modules.shared import opts, cmd_opts, restricted_opts
@ -80,7 +80,6 @@ css_hide_progressbar = """
# Important that they exactly match script.js for tooltip to work.
random_symbol = '\U0001f3b2\ufe0f' # 🎲️
reuse_symbol = '\u267b\ufe0f' # ♻️
art_symbol = '\U0001f3a8' # 🎨
paste_symbol = '\u2199\ufe0f' # ↙
folder_symbol = '\U0001f4c2' # 📂
refresh_symbol = '\U0001f504' # 🔄
@ -159,7 +158,7 @@ def save_files(js_data, images, do_make_zip, index):
zip_file.writestr(filenames[i], f.read())
fullfns.insert(0, zip_filepath)
return gr.File.update(value=fullfns, visible=True), '', '', plaintext_to_html(f"Saved: {filenames[0]}")
return gr.File.update(value=fullfns, visible=True), plaintext_to_html(f"Saved: {filenames[0]}")
@ -234,13 +233,6 @@ def check_progress_call_initial(id_part):
return check_progress_call(id_part)
def roll_artist(prompt):
allowed_cats = set([x for x in shared.artist_db.categories() if len(opts.random_artist_categories)==0 or x in opts.random_artist_categories])
artist = random.choice([x for x in shared.artist_db.artists if x.category in allowed_cats])
return prompt + ", " + artist.name if prompt != '' else artist.name
def visit(x, func, path=""):
if hasattr(x, 'children'):
for c in x.children:
@ -270,7 +262,7 @@ def apply_styles(prompt, prompt_neg, style1_name, style2_name):
def interrogate(image):
prompt = shared.interrogator.interrogate(image)
prompt = shared.interrogator.interrogate(image.convert("RGB"))
return gr_show(True) if prompt is None else prompt
@ -403,7 +395,6 @@ def create_toprow(is_img2img):
)
with gr.Column(scale=1, elem_id="roll_col"):
roll = gr.Button(value=art_symbol, elem_id="roll", visible=len(shared.artist_db.artists) > 0)
paste = gr.Button(value=paste_symbol, elem_id="paste")
save_style = gr.Button(value=save_style_symbol, elem_id="style_create")
prompt_style_apply = gr.Button(value=apply_style_symbol, elem_id="style_apply")
@ -452,7 +443,7 @@ def create_toprow(is_img2img):
prompt_style2 = gr.Dropdown(label="Style 2", elem_id=f"{id_part}_style2_index", choices=[k for k, v in shared.prompt_styles.styles.items()], value=next(iter(shared.prompt_styles.styles.keys())))
prompt_style2.save_to_config = True
return prompt, roll, prompt_style, negative_prompt, prompt_style2, submit, button_interrogate, button_deepbooru, prompt_style_apply, save_style, paste, token_counter, token_button
return prompt, prompt_style, negative_prompt, prompt_style2, submit, button_interrogate, button_deepbooru, prompt_style_apply, save_style, paste, token_counter, token_button
def setup_progressbar(progressbar, preview, id_part, textinfo=None):
@ -532,7 +523,7 @@ def create_refresh_button(refresh_component, refresh_method, refreshed_args, ele
return gr.update(**(args or {}))
refresh_button = gr.Button(value=refresh_symbol, elem_id=elem_id)
refresh_button = ui_components.ToolButton(value=refresh_symbol, elem_id=elem_id)
refresh_button.click(
fn=refresh,
inputs=[],
@ -570,13 +561,14 @@ Requested path was: {f}
generation_info = None
with gr.Column():
with gr.Row():
with gr.Row(elem_id=f"image_buttons_{tabname}"):
open_folder_button = gr.Button(folder_symbol, elem_id="hidden_element" if shared.cmd_opts.hide_ui_dir_config else 'open_folder')
if tabname != "extras":
save = gr.Button('Save', elem_id=f'save_{tabname}')
save_zip = gr.Button('Zip', elem_id=f'save_zip_{tabname}')
buttons = parameters_copypaste.create_buttons(["img2img", "inpaint", "extras"])
button_id = "hidden_element" if shared.cmd_opts.hide_ui_dir_config else 'open_folder'
open_folder_button = gr.Button(folder_symbol, elem_id=button_id)
open_folder_button.click(
fn=lambda: open_folder(opts.outdir_samples or outdir),
@ -585,14 +577,13 @@ Requested path was: {f}
)
if tabname != "extras":
with gr.Row():
do_make_zip = gr.Checkbox(label="Make Zip when Save?", value=False)
with gr.Row():
download_files = gr.File(None, file_count="multiple", interactive=False, show_label=False, visible=False)
with gr.Group():
html_info = gr.HTML()
html_log = gr.HTML()
generation_info = gr.Textbox(visible=False)
if tabname == 'txt2img' or tabname == 'img2img':
generation_info_button = gr.Button(visible=False, elem_id=f"{tabname}_generation_info_button")
@ -606,25 +597,54 @@ Requested path was: {f}
save.click(
fn=wrap_gradio_call(save_files),
_js="(x, y, z, w) => [x, y, z, selected_gallery_index()]",
_js="(x, y, z, w) => [x, y, false, selected_gallery_index()]",
inputs=[
generation_info,
result_gallery,
do_make_zip,
html_info,
html_info,
],
outputs=[
download_files,
html_info,
html_info,
html_info,
html_log,
]
)
save_zip.click(
fn=wrap_gradio_call(save_files),
_js="(x, y, z, w) => [x, y, true, selected_gallery_index()]",
inputs=[
generation_info,
result_gallery,
html_info,
html_info,
],
outputs=[
download_files,
html_log,
]
)
else:
html_info_x = gr.HTML()
html_info = gr.HTML()
html_log = gr.HTML()
parameters_copypaste.bind_buttons(buttons, result_gallery, "txt2img" if tabname == "txt2img" else None)
return result_gallery, generation_info if tabname != "extras" else html_info_x, html_info
return result_gallery, generation_info if tabname != "extras" else html_info_x, html_info, html_log
def create_sampler_and_steps_selection(choices, tabname):
if opts.samplers_in_dropdown:
with gr.Row(elem_id=f"sampler_selection_{tabname}"):
sampler_index = gr.Dropdown(label='Sampling method', elem_id=f"{tabname}_sampling", choices=[x.name for x in choices], value=choices[0].name, type="index")
steps = gr.Slider(minimum=1, maximum=150, step=1, elem_id=f"{tabname}_steps", label="Sampling Steps", value=20)
else:
with gr.Group(elem_id=f"sampler_selection_{tabname}"):
steps = gr.Slider(minimum=1, maximum=150, step=1, elem_id=f"{tabname}_steps", label="Sampling Steps", value=20)
sampler_index = gr.Radio(label='Sampling method', elem_id=f"{tabname}_sampling", choices=[x.name for x in choices], value=choices[0].name, type="index")
return steps, sampler_index
def create_ui():
@ -639,14 +659,11 @@ def create_ui():
modules.scripts.scripts_txt2img.initialize_scripts(is_img2img=False)
with gr.Blocks(analytics_enabled=False) as txt2img_interface:
txt2img_prompt, roll, txt2img_prompt_style, txt2img_negative_prompt, txt2img_prompt_style2, submit, _, _,txt2img_prompt_style_apply, txt2img_save_style, txt2img_paste, token_counter, token_button = create_toprow(is_img2img=False)
txt2img_prompt, txt2img_prompt_style, txt2img_negative_prompt, txt2img_prompt_style2, submit, _, _,txt2img_prompt_style_apply, txt2img_save_style, txt2img_paste, token_counter, token_button = create_toprow(is_img2img=False)
dummy_component = gr.Label(visible=False)
txt_prompt_img = gr.File(label="", elem_id="txt2img_prompt_image", file_count="single", type="bytes", visible=False)
with gr.Row(elem_id='txt2img_progress_row'):
with gr.Column(scale=1):
pass
@ -657,9 +674,8 @@ def create_ui():
setup_progressbar(progressbar, txt2img_preview, 'txt2img')
with gr.Row().style(equal_height=False):
with gr.Column(variant='panel'):
steps = gr.Slider(minimum=1, maximum=150, step=1, label="Sampling Steps", value=20)
sampler_index = gr.Radio(label='Sampling method', elem_id="txt2img_sampling", choices=[x.name for x in samplers], value=samplers[0].name, type="index")
with gr.Column(variant='panel', elem_id="txt2img_settings"):
steps, sampler_index = create_sampler_and_steps_selection(samplers, "txt2img")
with gr.Group():
width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512)
@ -686,14 +702,14 @@ def create_ui():
with gr.Group():
custom_inputs = modules.scripts.scripts_txt2img.setup_ui()
txt2img_gallery, generation_info, html_info = create_output_panel("txt2img", opts.outdir_txt2img_samples)
txt2img_gallery, generation_info, html_info, html_log = create_output_panel("txt2img", opts.outdir_txt2img_samples)
parameters_copypaste.bind_buttons({"txt2img": txt2img_paste}, None, txt2img_prompt)
connect_reuse_seed(seed, reuse_seed, generation_info, dummy_component, is_subseed=False)
connect_reuse_seed(subseed, reuse_subseed, generation_info, dummy_component, is_subseed=True)
txt2img_args = dict(
fn=wrap_gradio_gpu_call(modules.txt2img.txt2img),
fn=wrap_gradio_gpu_call(modules.txt2img.txt2img, extra_outputs=[None, '', '']),
_js="submit",
inputs=[
txt2img_prompt,
@ -720,7 +736,8 @@ def create_ui():
outputs=[
txt2img_gallery,
generation_info,
html_info
html_info,
html_log,
],
show_progress=False,
)
@ -745,16 +762,6 @@ def create_ui():
outputs=[hr_options],
)
roll.click(
fn=roll_artist,
_js="update_txt2img_tokens",
inputs=[
txt2img_prompt,
],
outputs=[
txt2img_prompt,
]
)
txt2img_paste_fields = [
(txt2img_prompt, "Prompt"),
@ -797,8 +804,7 @@ def create_ui():
modules.scripts.scripts_img2img.initialize_scripts(is_img2img=True)
with gr.Blocks(analytics_enabled=False) as img2img_interface:
img2img_prompt, roll, img2img_prompt_style, img2img_negative_prompt, img2img_prompt_style2, submit, img2img_interrogate, img2img_deepbooru, img2img_prompt_style_apply, img2img_save_style, img2img_paste,token_counter, token_button = create_toprow(is_img2img=True)
img2img_prompt, img2img_prompt_style, img2img_negative_prompt, img2img_prompt_style2, submit, img2img_interrogate, img2img_deepbooru, img2img_prompt_style_apply, img2img_save_style, img2img_paste,token_counter, token_button = create_toprow(is_img2img=True)
with gr.Row(elem_id='img2img_progress_row'):
img2img_prompt_img = gr.File(label="", elem_id="img2img_prompt_image", file_count="single", type="bytes", visible=False)
@ -812,7 +818,7 @@ def create_ui():
setup_progressbar(progressbar, img2img_preview, 'img2img')
with gr.Row().style(equal_height=False):
with gr.Column(variant='panel'):
with gr.Column(variant='panel', elem_id="img2img_settings"):
with gr.Tabs(elem_id="mode_img2img") as tabs_img2img_mode:
with gr.TabItem('img2img', id='img2img'):
@ -859,8 +865,7 @@ def create_ui():
with gr.Row():
resize_mode = gr.Radio(label="Resize mode", elem_id="resize_mode", show_label=False, choices=["Just resize", "Crop and resize", "Resize and fill", "Just resize (latent upscale)"], type="index", value="Just resize")
steps = gr.Slider(minimum=1, maximum=150, step=1, label="Sampling Steps", value=20)
sampler_index = gr.Radio(label='Sampling method', choices=[x.name for x in samplers_for_img2img], value=samplers_for_img2img[0].name, type="index")
steps, sampler_index = create_sampler_and_steps_selection(samplers_for_img2img, "img2img")
with gr.Group():
width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="img2img_width")
@ -883,7 +888,7 @@ def create_ui():
with gr.Group():
custom_inputs = modules.scripts.scripts_img2img.setup_ui()
img2img_gallery, generation_info, html_info = create_output_panel("img2img", opts.outdir_img2img_samples)
img2img_gallery, generation_info, html_info, html_log = create_output_panel("img2img", opts.outdir_img2img_samples)
parameters_copypaste.bind_buttons({"img2img": img2img_paste}, None, img2img_prompt)
connect_reuse_seed(seed, reuse_seed, generation_info, dummy_component, is_subseed=False)
@ -915,7 +920,7 @@ def create_ui():
)
img2img_args = dict(
fn=wrap_gradio_gpu_call(modules.img2img.img2img),
fn=wrap_gradio_gpu_call(modules.img2img.img2img, extra_outputs=[None, '', '']),
_js="submit_img2img",
inputs=[
dummy_component,
@ -954,7 +959,8 @@ def create_ui():
outputs=[
img2img_gallery,
generation_info,
html_info
html_info,
html_log,
],
show_progress=False,
)
@ -974,18 +980,6 @@ def create_ui():
outputs=[img2img_prompt],
)
roll.click(
fn=roll_artist,
_js="update_img2img_tokens",
inputs=[
img2img_prompt,
],
outputs=[
img2img_prompt,
]
)
prompts = [(txt2img_prompt, txt2img_negative_prompt), (img2img_prompt, img2img_negative_prompt)]
style_dropdowns = [(txt2img_prompt_style, txt2img_prompt_style2), (img2img_prompt_style, img2img_prompt_style2)]
style_js_funcs = ["update_txt2img_tokens", "update_img2img_tokens"]
@ -1078,10 +1072,10 @@ def create_ui():
with gr.Group():
upscale_before_face_fix = gr.Checkbox(label='Upscale Before Restoring Faces', value=False)
result_images, html_info_x, html_info = create_output_panel("extras", opts.outdir_extras_samples)
result_images, html_info_x, html_info, html_log = create_output_panel("extras", opts.outdir_extras_samples)
submit.click(
fn=wrap_gradio_gpu_call(modules.extras.run_extras),
fn=wrap_gradio_gpu_call(modules.extras.run_extras, extra_outputs=[None, '']),
_js="get_extras_tab_index",
inputs=[
dummy_component,
@ -1142,8 +1136,14 @@ def create_ui():
with gr.Row():
primary_model_name = gr.Dropdown(modules.sd_models.checkpoint_tiles(), elem_id="modelmerger_primary_model_name", label="Primary model (A)")
create_refresh_button(primary_model_name, modules.sd_models.list_models, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, "refresh_checkpoint_A")
secondary_model_name = gr.Dropdown(modules.sd_models.checkpoint_tiles(), elem_id="modelmerger_secondary_model_name", label="Secondary model (B)")
create_refresh_button(secondary_model_name, modules.sd_models.list_models, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, "refresh_checkpoint_B")
tertiary_model_name = gr.Dropdown(modules.sd_models.checkpoint_tiles(), elem_id="modelmerger_tertiary_model_name", label="Tertiary model (C)")
create_refresh_button(tertiary_model_name, modules.sd_models.list_models, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, "refresh_checkpoint_C")
custom_name = gr.Textbox(label="Custom Name (Optional)")
interp_amount = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, label='Multiplier (M) - set to 0 to get model A', value=0.3)
interp_method = gr.Radio(choices=["Weighted sum", "Add difference"], value="Weighted sum", label="Interpolation Method")
@ -1157,8 +1157,6 @@ def create_ui():
with gr.Column(variant='panel'):
submit_result = gr.Textbox(elem_id="modelmerger_result", show_label=False)
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings()
with gr.Blocks(analytics_enabled=False) as train_interface:
with gr.Row().style(equal_height=False):
gr.HTML(value="<p style='margin-bottom: 0.7em'>See <b><a href=\"https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Textual-Inversion\">wiki</a></b> for detailed explanation.</p>")
@ -1447,7 +1445,7 @@ def create_ui():
res = comp(label=info.label, value=fun(), elem_id=elem_id, **(args or {}))
create_refresh_button(res, info.refresh, info.component_args, "refresh_" + key)
else:
with gr.Row(variant="compact"):
with ui_components.FormRow():
res = comp(label=info.label, value=fun(), elem_id=elem_id, **(args or {}))
create_refresh_button(res, info.refresh, info.component_args, "refresh_" + key)
else:

18
modules/ui_components.py Normal file
View File

@ -0,0 +1,18 @@
import gradio as gr
class ToolButton(gr.Button, gr.components.FormComponent):
"""Small button with single emoji as text, fits inside gradio forms"""
def __init__(self, **kwargs):
super().__init__(variant="tool", **kwargs)
def get_block_name(self):
return "button"
class FormRow(gr.Row, gr.components.FormComponent):
"""Same as gr.Row but fits inside gradio forms"""
def get_block_name(self):
return "row"

View File

@ -15,7 +15,8 @@ Savedfile = namedtuple("Savedfile", ["name"])
def save_pil_to_file(pil_image, dir=None):
already_saved_as = getattr(pil_image, 'already_saved_as', None)
if already_saved_as and os.path.isfile(already_saved_as):
shared.demo.temp_dirs = shared.demo.temp_dirs | {os.path.abspath(os.path.dirname(already_saved_as))}
shared.demo.temp_file_sets[0] = shared.demo.temp_file_sets[0] | {os.path.abspath(already_saved_as)}
file_obj = Savedfile(already_saved_as)
return file_obj
@ -44,7 +45,7 @@ def on_tmpdir_changed():
os.makedirs(shared.opts.temp_dir, exist_ok=True)
shared.demo.temp_dirs = shared.demo.temp_dirs | {os.path.abspath(shared.opts.temp_dir)}
shared.demo.temp_file_sets[0] = shared.demo.temp_file_sets[0] | {os.path.abspath(shared.opts.temp_dir)}
def cleanup_tmpdr():

137
modules/xlmr.py Normal file
View File

@ -0,0 +1,137 @@
from transformers import BertPreTrainedModel,BertModel,BertConfig
import torch.nn as nn
import torch
from transformers.models.xlm_roberta.configuration_xlm_roberta import XLMRobertaConfig
from transformers import XLMRobertaModel,XLMRobertaTokenizer
from typing import Optional
class BertSeriesConfig(BertConfig):
def __init__(self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, position_embedding_type="absolute", use_cache=True, classifier_dropout=None,project_dim=512, pooler_fn="average",learn_encoder=False,model_type='bert',**kwargs):
super().__init__(vocab_size, hidden_size, num_hidden_layers, num_attention_heads, intermediate_size, hidden_act, hidden_dropout_prob, attention_probs_dropout_prob, max_position_embeddings, type_vocab_size, initializer_range, layer_norm_eps, pad_token_id, position_embedding_type, use_cache, classifier_dropout, **kwargs)
self.project_dim = project_dim
self.pooler_fn = pooler_fn
self.learn_encoder = learn_encoder
class RobertaSeriesConfig(XLMRobertaConfig):
def __init__(self, pad_token_id=1, bos_token_id=0, eos_token_id=2,project_dim=512,pooler_fn='cls',learn_encoder=False, **kwargs):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.project_dim = project_dim
self.pooler_fn = pooler_fn
self.learn_encoder = learn_encoder
class BertSeriesModelWithTransformation(BertPreTrainedModel):
_keys_to_ignore_on_load_unexpected = [r"pooler"]
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
config_class = BertSeriesConfig
def __init__(self, config=None, **kargs):
# modify initialization for autoloading
if config is None:
config = XLMRobertaConfig()
config.attention_probs_dropout_prob= 0.1
config.bos_token_id=0
config.eos_token_id=2
config.hidden_act='gelu'
config.hidden_dropout_prob=0.1
config.hidden_size=1024
config.initializer_range=0.02
config.intermediate_size=4096
config.layer_norm_eps=1e-05
config.max_position_embeddings=514
config.num_attention_heads=16
config.num_hidden_layers=24
config.output_past=True
config.pad_token_id=1
config.position_embedding_type= "absolute"
config.type_vocab_size= 1
config.use_cache=True
config.vocab_size= 250002
config.project_dim = 768
config.learn_encoder = False
super().__init__(config)
self.roberta = XLMRobertaModel(config)
self.transformation = nn.Linear(config.hidden_size,config.project_dim)
self.pre_LN=nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.tokenizer = XLMRobertaTokenizer.from_pretrained('xlm-roberta-large')
self.pooler = lambda x: x[:,0]
self.post_init()
def encode(self,c):
device = next(self.parameters()).device
text = self.tokenizer(c,
truncation=True,
max_length=77,
return_length=False,
return_overflowing_tokens=False,
padding="max_length",
return_tensors="pt")
text["input_ids"] = torch.tensor(text["input_ids"]).to(device)
text["attention_mask"] = torch.tensor(
text['attention_mask']).to(device)
features = self(**text)
return features['projection_state']
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) :
r"""
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.roberta(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=True,
return_dict=return_dict,
)
# last module outputs
sequence_output = outputs[0]
# project every module
sequence_output_ln = self.pre_LN(sequence_output)
# pooler
pooler_output = self.pooler(sequence_output_ln)
pooler_output = self.transformation(pooler_output)
projection_state = self.transformation(outputs.last_hidden_state)
return {
'pooler_output':pooler_output,
'last_hidden_state':outputs.last_hidden_state,
'hidden_states':outputs.hidden_states,
'attentions':outputs.attentions,
'projection_state':projection_state,
'sequence_out': sequence_output
}
class RobertaSeriesModelWithTransformation(BertSeriesModelWithTransformation):
base_model_prefix = 'roberta'
config_class= RobertaSeriesConfig

View File

@ -5,7 +5,7 @@ fairscale==0.4.4
fonts
font-roboto
gfpgan
gradio==3.9
gradio==3.15.0
invisible-watermark
numpy
omegaconf

View File

@ -3,7 +3,7 @@ transformers==4.19.2
accelerate==0.12.0
basicsr==1.4.2
gfpgan==1.3.8
gradio==3.9
gradio==3.15.0
numpy==1.23.3
Pillow==9.2.0
realesrgan==0.3.0

View File

@ -140,7 +140,7 @@ class Script(scripts.Script):
try:
args = cmdargs(line)
except Exception:
print(f"Error parsing line [line] as commandline:", file=sys.stderr)
print(f"Error parsing line {line} as commandline:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
args = {"prompt": line}
else:

View File

@ -35,8 +35,9 @@ class Script(scripts.Script):
seed = p.seed
init_img = p.init_images[0]
init_img = images.flatten(init_img, opts.img2img_background_color)
if (upscaler.name != "None"):
if upscaler.name != "None":
img = upscaler.scaler.upscale(init_img, scale_factor, upscaler.data_path)
else:
img = init_img

View File

@ -245,11 +245,6 @@ input[type="range"]{
margin: 0.5em 0 -0.3em 0;
}
#txt2img_sampling label{
padding-left: 0.6em;
padding-right: 0.6em;
}
#mask_bug_info {
text-align: center;
display: block;
@ -501,13 +496,6 @@ input[type="range"]{
padding: 0;
}
#refresh_sd_model_checkpoint, #refresh_sd_vae, #refresh_sd_hypernetwork, #refresh_train_hypernetwork_name, #refresh_train_embedding_name, #refresh_localization{
max-width: 2.5em;
min-width: 2.5em;
height: 2.4em;
}
canvas[key="mask"] {
z-index: 12 !important;
filter: invert();
@ -568,6 +556,33 @@ img2maskimg, #img2maskimg > .h-60, #img2maskimg > .h-60 > div, #img2maskimg > .h
font-size: 95%;
}
#image_buttons_txt2img button, #image_buttons_img2img button, #image_buttons_extras button{
min-width: auto;
padding-left: 0.5em;
padding-right: 0.5em;
}
.gr-form{
background-color: white;
}
.dark .gr-form{
background-color: rgb(31 41 55 / var(--tw-bg-opacity));
}
.gr-button-tool{
max-width: 2.5em;
min-width: 2.5em !important;
height: 2.4em;
margin: 0.55em 0;
}
#quicksettings .gr-button-tool{
margin: 0;
}
/* The following handles localization for right-to-left (RTL) languages like Arabic.
The rtl media type will only be activated by the logic in javascript/localization.js.
If you change anything above, you need to make sure it is RTL compliant by just running

68
v2-inference-v.yaml Normal file
View File

@ -0,0 +1,68 @@
model:
base_learning_rate: 1.0e-4
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
parameterization: "v"
linear_start: 0.00085
linear_end: 0.0120
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: "jpg"
cond_stage_key: "txt"
image_size: 64
channels: 4
cond_stage_trainable: false
conditioning_key: crossattn
monitor: val/loss_simple_ema
scale_factor: 0.18215
use_ema: False # we set this to false because this is an inference only config
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
use_checkpoint: True
use_fp16: True
image_size: 32 # unused
in_channels: 4
out_channels: 4
model_channels: 320
attention_resolutions: [ 4, 2, 1 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
num_head_channels: 64 # need to fix for flash-attn
use_spatial_transformer: True
use_linear_in_transformer: True
transformer_depth: 1
context_dim: 1024
legacy: False
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
#attn_type: "vanilla-xformers"
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
params:
freeze: True
layer: "penultimate"