Compare commits
1 Commits
master
...
fix-highre
Author | SHA1 | Date | |
---|---|---|---|
|
1ae860cf4e |
|
@ -643,6 +643,27 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
|||
|
||||
self.truncate_x = int(self.firstphase_width - firstphase_width_truncated) // opt_f
|
||||
self.truncate_y = int(self.firstphase_height - firstphase_height_truncated) // opt_f
|
||||
|
||||
def create_dummy_mask(self, x, width=None, height=None):
|
||||
if self.sampler.conditioning_key in {'hybrid', 'concat'}:
|
||||
height = height or self.height
|
||||
width = width or self.width
|
||||
|
||||
# The "masked-image" in this case will just be all zeros since the entire image is masked.
|
||||
image_conditioning = torch.zeros(x.shape[0], 3, height, width, device=x.device)
|
||||
image_conditioning = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image_conditioning))
|
||||
|
||||
# Add the fake full 1s mask to the first dimension.
|
||||
image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
|
||||
image_conditioning = image_conditioning.to(x.dtype)
|
||||
|
||||
else:
|
||||
# Dummy zero conditioning if we're not using inpainting model.
|
||||
# Still takes up a bit of memory, but no encoder call.
|
||||
# Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size.
|
||||
image_conditioning = torch.zeros(x.shape[0], 5, 1, 1, dtype=x.dtype, device=x.device)
|
||||
|
||||
return image_conditioning
|
||||
|
||||
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
|
||||
self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
|
||||
|
@ -690,11 +711,14 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
|||
x = None
|
||||
devices.torch_gc()
|
||||
|
||||
image_conditioning = self.img2img_image_conditioning(
|
||||
decoded_samples,
|
||||
samples,
|
||||
decoded_samples.new_ones(decoded_samples.shape[0], 1, decoded_samples.shape[2], decoded_samples.shape[3])
|
||||
)
|
||||
if opts.use_scale_latent_for_hires_fix:
|
||||
image_conditioning = self.create_dummy_mask(samples)
|
||||
else:
|
||||
image_conditioning = self.img2img_image_conditioning(
|
||||
decoded_samples,
|
||||
samples,
|
||||
decoded_samples.new_ones(decoded_samples.shape[0], 1, decoded_samples.shape[2], decoded_samples.shape[3])
|
||||
)
|
||||
samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.steps, image_conditioning=image_conditioning)
|
||||
|
||||
return samples
|
||||
|
|
Loading…
Reference in New Issue
Block a user