import PIL import argparse, os, sys, glob import torch import torch.nn as nn import numpy as np import gradio as gr from omegaconf import OmegaConf from PIL import Image from itertools import islice from einops import rearrange, repeat from torchvision.utils import make_grid from torch import autocast from contextlib import contextmanager, nullcontext import mimetypes import random import k_diffusion as K from ldm.util import instantiate_from_config from ldm.models.diffusion.ddim import DDIMSampler from ldm.models.diffusion.plms import PLMSSampler # this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the bowser will not show any UI mimetypes.init() mimetypes.add_type('application/javascript', '.js') # some of those options should not be changed at all because they would break the model, so I removed them from options. opt_C = 4 opt_f = 8 parser = argparse.ArgumentParser() parser.add_argument("--outdir", type=str, nargs="?", help="dir to write results to", default=None) parser.add_argument("--skip_grid", action='store_true', help="do not save a grid, only individual samples. Helpful when evaluating lots of samples",) parser.add_argument("--skip_save", action='store_true', help="do not save indiviual samples. For speed measurements.",) parser.add_argument("--n_rows", type=int, default=0, help="rows in the grid (default: n_samples)",) parser.add_argument("--config", type=str, default="configs/stable-diffusion/v1-inference.yaml", help="path to config which constructs model",) parser.add_argument("--ckpt", type=str, default="models/ldm/stable-diffusion-v1/model.ckpt", help="path to checkpoint of model",) parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast") parser.add_argument("--gfpgan-dir", type=str, help="GFPGAN directory", default='./GFPGAN') opt = parser.parse_args() GFPGAN_dir = opt.gfpgan_dir def chunk(it, size): it = iter(it) return iter(lambda: tuple(islice(it, size)), ()) def load_model_from_config(config, ckpt, verbose=False): print(f"Loading model from {ckpt}") pl_sd = torch.load(ckpt, map_location="cpu") if "global_step" in pl_sd: print(f"Global Step: {pl_sd['global_step']}") sd = pl_sd["state_dict"] model = instantiate_from_config(config.model) m, u = model.load_state_dict(sd, strict=False) if len(m) > 0 and verbose: print("missing keys:") print(m) if len(u) > 0 and verbose: print("unexpected keys:") print(u) model.cuda() model.eval() return model def load_img_pil(img_pil): image = img_pil.convert("RGB") w, h = image.size print(f"loaded input image of size ({w}, {h})") w, h = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 64 image = image.resize((w, h), resample=PIL.Image.LANCZOS) print(f"cropped image to size ({w}, {h})") image = np.array(image).astype(np.float32) / 255.0 image = image[None].transpose(0, 3, 1, 2) image = torch.from_numpy(image) return 2. * image - 1. def load_img(path): return load_img_pil(Image.open(path)) class CFGDenoiser(nn.Module): def __init__(self, model): super().__init__() self.inner_model = model def forward(self, x, sigma, uncond, cond, cond_scale): x_in = torch.cat([x] * 2) sigma_in = torch.cat([sigma] * 2) cond_in = torch.cat([uncond, cond]) uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2) return uncond + (cond - uncond) * cond_scale def load_GFPGAN(): model_name = 'GFPGANv1.3' model_path = os.path.join(GFPGAN_dir, 'experiments/pretrained_models', model_name + '.pth') if not os.path.isfile(model_path): raise Exception("GFPGAN model not found at path "+model_path) sys.path.append(os.path.abspath(GFPGAN_dir)) from gfpgan import GFPGANer return GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None) GFPGAN = None if os.path.exists(GFPGAN_dir): try: GFPGAN = load_GFPGAN() print("Loaded GFPGAN") except Exception: import traceback print("Error loading GFPGAN:", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) config = OmegaConf.load("configs/stable-diffusion/v1-inference.yaml") model = load_model_from_config(config, "models/ldm/stable-diffusion-v1/model.ckpt") device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") model = model.half().to(device) def image_grid(imgs, rows): cols = len(imgs) // rows w, h = imgs[0].size grid = Image.new('RGB', size=(cols * w, rows * h)) for i, img in enumerate(imgs): grid.paste(img, box=(i % cols * w, i // cols * h)) return grid def dream(prompt: str, ddim_steps: int, sampler_name: str, fixed_code: bool, use_GFPGAN: bool, ddim_eta: float, n_iter: int, n_samples: int, cfg_scale: float, seed: int, height: int, width: int): torch.cuda.empty_cache() outpath = opt.outdir or "outputs/txt2img-samples" if seed == -1: seed = random.randrange(4294967294) seed = int(seed) is_PLMS = sampler_name == 'PLMS' is_DDIM = sampler_name == 'DDIM' is_Kdif = sampler_name == 'k-diffusion' sampler = None if is_PLMS: sampler = PLMSSampler(model) elif is_DDIM: sampler = DDIMSampler(model) elif is_Kdif: pass else: raise Exception("Unknown sampler: " + sampler_name) model_wrap = K.external.CompVisDenoiser(model) os.makedirs(outpath, exist_ok=True) batch_size = n_samples n_rows = opt.n_rows if opt.n_rows > 0 else batch_size assert prompt is not None data = [batch_size * [prompt]] sample_path = os.path.join(outpath, "samples") os.makedirs(sample_path, exist_ok=True) base_count = len(os.listdir(sample_path)) grid_count = len(os.listdir(outpath)) - 1 start_code = None if fixed_code: start_code = torch.randn([n_samples, opt_C, height // opt_f, width // opt_f], device=device) precision_scope = autocast if opt.precision == "autocast" else nullcontext output_images = [] with torch.no_grad(), precision_scope("cuda"), model.ema_scope(): all_samples = [] for n in range(n_iter): for batch_index, prompts in enumerate(data): uc = None if cfg_scale != 1.0: uc = model.get_learned_conditioning(batch_size * [""]) if isinstance(prompts, tuple): prompts = list(prompts) c = model.get_learned_conditioning(prompts) shape = [opt_C, height // opt_f, width // opt_f] current_seed = seed + n * len(data) + batch_index torch.manual_seed(current_seed) if is_Kdif: sigmas = model_wrap.get_sigmas(ddim_steps) x = torch.randn([n_samples, *shape], device=device) * sigmas[0] # for GPU draw model_wrap_cfg = CFGDenoiser(model_wrap) samples_ddim = K.sampling.sample_lms(model_wrap_cfg, x, sigmas, extra_args={'cond': c, 'uncond': uc, 'cond_scale': cfg_scale}, disable=False) elif sampler is not None: samples_ddim, _ = sampler.sample(S=ddim_steps, conditioning=c, batch_size=n_samples, shape=shape, verbose=False, unconditional_guidance_scale=cfg_scale, unconditional_conditioning=uc, eta=ddim_eta, x_T=start_code) x_samples_ddim = model.decode_first_stage(samples_ddim) x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) if not opt.skip_save or not opt.skip_grid: for x_sample in x_samples_ddim: x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c') x_sample = x_sample.astype(np.uint8) if use_GFPGAN and GFPGAN is not None: cropped_faces, restored_faces, restored_img = GFPGAN.enhance(x_sample, has_aligned=False, only_center_face=False, paste_back=True) x_sample = restored_img image = Image.fromarray(x_sample) image.save(os.path.join(sample_path, f"{base_count:05}-{current_seed}_{prompt.replace(' ', '_')[:128]}.png")) output_images.append(image) base_count += 1 if not opt.skip_grid: all_samples.append(x_sample) if not opt.skip_grid: # additionally, save as grid grid = image_grid(output_images, rows=n_rows) grid.save(os.path.join(outpath, f'grid-{grid_count:04}.png')) grid_count += 1 if sampler is not None: del sampler info = f""" {prompt} Steps: {ddim_steps}, Sampler: {sampler_name}, CFG scale: {cfg_scale}, Seed: {seed}{', GFPGAN' if use_GFPGAN and GFPGAN is not None else ''} """.strip() return output_images, seed, info dream_interface = gr.Interface( dream, inputs=[ gr.Textbox(label="Prompt", placeholder="A corgi wearing a top hat as an oil painting.", lines=1), gr.Slider(minimum=1, maximum=150, step=1, label="Sampling Steps", value=50), gr.Radio(label='Sampling method', choices=["DDIM", "PLMS", "k-diffusion"], value="k-diffusion"), gr.Checkbox(label='Enable Fixed Code sampling', value=False), gr.Checkbox(label='Fix faces using GFPGAN', value=False, visible=GFPGAN is not None), gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="DDIM ETA", value=0.0, visible=False), gr.Slider(minimum=1, maximum=16, step=1, label='Sampling iterations', value=1), gr.Slider(minimum=1, maximum=4, step=1, label='Samples per iteration', value=1), gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='Classifier Free Guidance Scale', value=7.0), gr.Number(label='Seed', value=-1), gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512), gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512), ], outputs=[ gr.Gallery(label="Images"), gr.Number(label='Seed'), gr.Textbox(label="Copy-paste generation parameters"), ], title="Stable Diffusion Text-to-Image K", description="Generate images from text with Stable Diffusion (using K-LMS)", allow_flagging="never" ) def translation(prompt: str, init_img, ddim_steps: int, ddim_eta: float, n_iter: int, n_samples: int, cfg_scale: float, denoising_strength: float, seed: int, height: int, width: int): torch.cuda.empty_cache() outpath = opt.outdir or "outputs/img2img-samples" if seed == -1: seed = random.randrange(4294967294) sampler = DDIMSampler(model) model_wrap = K.external.CompVisDenoiser(model) os.makedirs(outpath, exist_ok=True) batch_size = n_samples n_rows = opt.n_rows if opt.n_rows > 0 else batch_size assert prompt is not None data = [batch_size * [prompt]] sample_path = os.path.join(outpath, "samples") os.makedirs(sample_path, exist_ok=True) base_count = len(os.listdir(sample_path)) grid_count = len(os.listdir(outpath)) - 1 seedit = 0 image = init_img.convert("RGB") w, h = image.size image = np.array(image).astype(np.float32) / 255.0 image = image[None].transpose(0, 3, 1, 2) image = torch.from_numpy(image) output_images = [] precision_scope = autocast if opt.precision == "autocast" else nullcontext with torch.no_grad(): with precision_scope("cuda"): init_image = 2. * image - 1. init_image = init_image.to(device) init_image = repeat(init_image, '1 ... -> b ...', b=batch_size) init_latent = model.get_first_stage_encoding(model.encode_first_stage(init_image)) # move to latent space x0 = init_latent sampler.make_schedule(ddim_num_steps=ddim_steps, ddim_eta=ddim_eta, verbose=False) assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]' t_enc = int(denoising_strength * ddim_steps) print(f"target t_enc is {t_enc} steps") with model.ema_scope(): all_samples = list() for n in range(n_iter): for batch_index, prompts in enumerate(data): uc = None if cfg_scale != 1.0: uc = model.get_learned_conditioning(batch_size * [""]) if isinstance(prompts, tuple): prompts = list(prompts) c = model.get_learned_conditioning(prompts) sigmas = model_wrap.get_sigmas(ddim_steps) current_seed = seed + n * len(data) + batch_index torch.manual_seed(current_seed) noise = torch.randn_like(x0) * sigmas[ddim_steps - t_enc - 1] # for GPU draw xi = x0 + noise sigma_sched = sigmas[ddim_steps - t_enc - 1:] # x = torch.randn([n_samples, *shape]).to(device) * sigmas[0] # for CPU draw model_wrap_cfg = CFGDenoiser(model_wrap) extra_args = {'cond': c, 'uncond': uc, 'cond_scale': cfg_scale} samples_ddim = K.sampling.sample_lms(model_wrap_cfg, xi, sigma_sched, extra_args=extra_args, disable=False) x_samples_ddim = model.decode_first_stage(samples_ddim) x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) if not opt.skip_save: for x_sample in x_samples_ddim: x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c') image = Image.fromarray(x_sample.astype(np.uint8)) image.save(os.path.join(sample_path, f"{base_count:05}-{current_seed}_{prompt.replace(' ', '_')[:128]}.png")) output_images.append(image) base_count += 1 seedit += 1 if not opt.skip_grid: all_samples.append(x_samples_ddim) if not opt.skip_grid: # additionally, save as grid grid = torch.stack(all_samples, 0) grid = rearrange(grid, 'n b c h w -> (n b) c h w') grid = make_grid(grid, nrow=n_rows) # to image grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy() Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f'grid-{grid_count:04}.png')) Image.fromarray(grid.astype(np.uint8)) grid_count += 1 del sampler return output_images, seed # prompt, init_img, ddim_steps, plms, ddim_eta, n_iter, n_samples, cfg_scale, denoising_strength, seed img2img_interface = gr.Interface( translation, inputs=[ gr.Textbox(placeholder="A fantasy landscape, trending on artstation.", lines=1), gr.Image(value="https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg", source="upload", interactive=True, type="pil"), gr.Slider(minimum=1, maximum=150, step=1, label="Sampling Steps", value=50), gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="DDIM ETA", value=0.0, visible=False), gr.Slider(minimum=1, maximum=50, step=1, label='Sampling iterations', value=2), gr.Slider(minimum=1, maximum=8, step=1, label='Samples per iteration', value=2), gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='Classifier Free Guidance Scale', value=7.0), gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising Strength', value=0.75), gr.Number(label='Seed', value=-1), gr.Slider(minimum=64, maximum=2048, step=64, label="Resize Height", value=512), gr.Slider(minimum=64, maximum=2048, step=64, label="Resize Width", value=512), ], outputs=[ gr.Gallery(), gr.Number(label='Seed') ], title="Stable Diffusion Image-to-Image", description="Generate images from images with Stable Diffusion", ) demo = gr.TabbedInterface(interface_list=[dream_interface, img2img_interface], tab_names=["Dream", "Image Translation"]) demo.launch()