import os import threading from modules.paths import script_path import torch import numpy as np from omegaconf import OmegaConf from PIL import Image import signal from ldm.util import instantiate_from_config from modules.shared import opts, cmd_opts, state import modules.shared as shared import modules.ui from modules.ui import plaintext_to_html import modules.scripts import modules.processing as processing import modules.sd_hijack import modules.codeformer_model import modules.gfpgan_model import modules.face_restoration import modules.realesrgan_model as realesrgan import modules.esrgan_model as esrgan import modules.images as images import modules.lowvram import modules.txt2img import modules.img2img modules.codeformer_model.setup_codeformer() modules.gfpgan_model.setup_gfpgan() shared.face_restorers.append(modules.face_restoration.FaceRestoration()) esrgan.load_models(cmd_opts.esrgan_models_path) realesrgan.setup_realesrgan() def load_model_from_config(config, ckpt, verbose=False): print(f"Loading model from {ckpt}") pl_sd = torch.load(ckpt, map_location="cpu") if "global_step" in pl_sd: print(f"Global Step: {pl_sd['global_step']}") sd = pl_sd["state_dict"] model = instantiate_from_config(config.model) m, u = model.load_state_dict(sd, strict=False) if len(m) > 0 and verbose: print("missing keys:") print(m) if len(u) > 0 and verbose: print("unexpected keys:") print(u) model.eval() return model cached_images = {} def run_extras(image, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility): processing.torch_gc() image = image.convert("RGB") outpath = opts.outdir_samples or opts.outdir_extras_samples if gfpgan_visibility > 0: restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8)) res = Image.fromarray(restored_img) if gfpgan_visibility < 1.0: res = Image.blend(image, res, gfpgan_visibility) image = res if codeformer_visibility > 0: restored_img = modules.codeformer_model.codeformer.restore(np.array(image, dtype=np.uint8), w=codeformer_weight) res = Image.fromarray(restored_img) if codeformer_visibility < 1.0: res = Image.blend(image, res, codeformer_visibility) image = res if upscaling_resize != 1.0: def upscale(image, scaler_index, resize): small = image.crop((image.width // 2, image.height // 2, image.width // 2 + 10, image.height // 2 + 10)) pixels = tuple(np.array(small).flatten().tolist()) key = (resize, scaler_index, image.width, image.height) + pixels c = cached_images.get(key) if c is None: upscaler = shared.sd_upscalers[scaler_index] c = upscaler.upscale(image, image.width * resize, image.height * resize) cached_images[key] = c return c res = upscale(image, extras_upscaler_1, upscaling_resize) if extras_upscaler_2 != 0 and extras_upscaler_2_visibility>0: res2 = upscale(image, extras_upscaler_2, upscaling_resize) res = Image.blend(res, res2, extras_upscaler_2_visibility) image = res while len(cached_images) > 2: del cached_images[next(iter(cached_images.keys()))] images.save_image(image, outpath, "", None, '', opts.samples_format, short_filename=True, no_prompt=True) return image, '', '' def run_pnginfo(image): info = '' for key, text in image.info.items(): info += f"""
{plaintext_to_html(str(key))}
{plaintext_to_html(str(text))}
{message}