import contextlib import os import sys import traceback import numpy as np import torch from PIL import Image from basicsr.utils.download_util import load_file_from_url import modules.images from modules import modelloader from modules.paths import models_path from modules.shared import cmd_opts, opts, device from modules.swinir_model_arch import SwinIR as net model_dir = "SwinIR" model_url = "https://github.com/JingyunLiang/SwinIR/releases/download/v0.0/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR-L_x4_GAN.pth" model_name = "SwinIR x4" model_path = os.path.join(models_path, model_dir) cmd_path = "" precision_scope = ( torch.autocast if cmd_opts.precision == "autocast" else contextlib.nullcontext ) def load_model(path, scale=4): global model_path global model_name if "http" in path: dl_name = "%s%s" % (model_name.replace(" ", "_"), ".pth") filename = load_file_from_url(url=path, model_dir=model_path, file_name=dl_name, progress=True) else: filename = path if filename is None or not os.path.exists(filename): return None model = net( upscale=scale, in_chans=3, img_size=64, window_size=8, img_range=1.0, depths=[6, 6, 6, 6, 6, 6, 6, 6, 6], embed_dim=240, num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8], mlp_ratio=2, upsampler="nearest+conv", resi_connection="3conv", ) pretrained_model = torch.load(filename) model.load_state_dict(pretrained_model["params_ema"], strict=True) if not cmd_opts.no_half: model = model.half() return model def setup_model(dirname): global model_path global model_name global cmd_path if not os.path.exists(model_path): os.makedirs(model_path) cmd_path = dirname model_file = "" try: models = modelloader.load_models(model_path, ext_filter=[".pt", ".pth"], command_path=cmd_path) if len(models) != 0: model_file = models[0] name = modelloader.friendly_name(model_file) else: # Add the "default" model if none are found. model_file = model_url name = model_name modules.shared.sd_upscalers.append(UpscalerSwin(model_file, name)) except Exception: print(f"Error loading SwinIR model: {model_file}", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) def upscale( img, model, tile=opts.SWIN_tile, tile_overlap=opts.SWIN_tile_overlap, window_size=8, scale=4, ): img = np.array(img) img = img[:, :, ::-1] img = np.moveaxis(img, 2, 0) / 255 img = torch.from_numpy(img).float() img = img.unsqueeze(0).to(device) with torch.no_grad(), precision_scope("cuda"): _, _, h_old, w_old = img.size() h_pad = (h_old // window_size + 1) * window_size - h_old w_pad = (w_old // window_size + 1) * window_size - w_old img = torch.cat([img, torch.flip(img, [2])], 2)[:, :, : h_old + h_pad, :] img = torch.cat([img, torch.flip(img, [3])], 3)[:, :, :, : w_old + w_pad] output = inference(img, model, tile, tile_overlap, window_size, scale) output = output[..., : h_old * scale, : w_old * scale] output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy() if output.ndim == 3: output = np.transpose( output[[2, 1, 0], :, :], (1, 2, 0) ) # CHW-RGB to HCW-BGR output = (output * 255.0).round().astype(np.uint8) # float32 to uint8 return Image.fromarray(output, "RGB") def inference(img, model, tile, tile_overlap, window_size, scale): # test the image tile by tile b, c, h, w = img.size() tile = min(tile, h, w) assert tile % window_size == 0, "tile size should be a multiple of window_size" sf = scale stride = tile - tile_overlap h_idx_list = list(range(0, h - tile, stride)) + [h - tile] w_idx_list = list(range(0, w - tile, stride)) + [w - tile] E = torch.zeros(b, c, h * sf, w * sf, dtype=torch.half, device=device).type_as(img) W = torch.zeros_like(E, dtype=torch.half, device=device) for h_idx in h_idx_list: for w_idx in w_idx_list: in_patch = img[..., h_idx : h_idx + tile, w_idx : w_idx + tile] out_patch = model(in_patch) out_patch_mask = torch.ones_like(out_patch) E[ ..., h_idx * sf : (h_idx + tile) * sf, w_idx * sf : (w_idx + tile) * sf ].add_(out_patch) W[ ..., h_idx * sf : (h_idx + tile) * sf, w_idx * sf : (w_idx + tile) * sf ].add_(out_patch_mask) output = E.div_(W) return output class UpscalerSwin(modules.images.Upscaler): def __init__(self, filename, title): self.name = title self.filename = filename def do_upscale(self, img): model = load_model(self.filename) if model is None: return img model = model.to(device) img = upscale(img, model) try: torch.cuda.empty_cache() except: pass return img