import glob import os import torch from modules import devices class HypernetworkModule(torch.nn.Module): def __init__(self, dim, state_dict): super().__init__() self.linear1 = torch.nn.Linear(dim, dim * 2) self.linear2 = torch.nn.Linear(dim * 2, dim) self.load_state_dict(state_dict, strict=True) self.to(devices.device) def forward(self, x): return x + (self.linear2(self.linear1(x))) class Hypernetwork: filename = None name = None def __init__(self, filename): self.filename = filename self.name = os.path.splitext(os.path.basename(filename))[0] self.layers = {} state_dict = torch.load(filename, map_location='cpu') for size, sd in state_dict.items(): self.layers[size] = (HypernetworkModule(size, sd[0]), HypernetworkModule(size, sd[1])) def load_hypernetworks(path): res = {} for filename in glob.iglob(path + '**/*.pt', recursive=True): hn = Hypernetwork(filename) res[hn.name] = hn return res def apply(self, x, context=None, mask=None, original=None): if CrossAttention.hypernetwork is not None and context.shape[2] in CrossAttention.hypernetwork: if context.shape[1] == 77 and CrossAttention.noise_cond: context = context + (torch.randn_like(context) * 0.1) h_k, h_v = CrossAttention.hypernetwork[context.shape[2]] k = self.to_k(h_k(context)) v = self.to_v(h_v(context)) else: k = self.to_k(context) v = self.to_v(context)