stable-diffusion-webui/modules/hypernetworks/hypernetwork.py
2022-10-24 17:21:18 +02:00

408 lines
15 KiB
Python

import datetime
import glob
import html
import os
import sys
import traceback
import tqdm
import csv
import torch
from ldm.util import default
from modules import devices, shared, processing, sd_models
import torch
from torch import einsum
from einops import rearrange, repeat
import modules.textual_inversion.dataset
from modules.textual_inversion import textual_inversion
from modules.textual_inversion.learn_schedule import LearnRateScheduler
class HypernetworkModule(torch.nn.Module):
multiplier = 1.0
def __init__(self, dim, state_dict=None, layer_structure=None, add_layer_norm=False):
super().__init__()
assert layer_structure is not None, "layer_structure mut not be None"
assert layer_structure[0] == 1, "Multiplier Sequence should start with size 1!"
assert layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!"
linears = []
for i in range(len(layer_structure) - 1):
linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
if add_layer_norm:
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
self.linear = torch.nn.Sequential(*linears)
if state_dict is not None:
self.fix_old_state_dict(state_dict)
self.load_state_dict(state_dict)
else:
for layer in self.linear:
layer.weight.data.normal_(mean=0.0, std=0.01)
layer.bias.data.zero_()
self.to(devices.device)
def fix_old_state_dict(self, state_dict):
changes = {
'linear1.bias': 'linear.0.bias',
'linear1.weight': 'linear.0.weight',
'linear2.bias': 'linear.1.bias',
'linear2.weight': 'linear.1.weight',
}
for fr, to in changes.items():
x = state_dict.get(fr, None)
if x is None:
continue
del state_dict[fr]
state_dict[to] = x
def forward(self, x):
return x + self.linear(x) * self.multiplier
def trainables(self):
layer_structure = []
for layer in self.linear:
layer_structure += [layer.weight, layer.bias]
return layer_structure
def apply_strength(value=None):
HypernetworkModule.multiplier = value if value is not None else shared.opts.sd_hypernetwork_strength
class Hypernetwork:
filename = None
name = None
def __init__(self, name=None, enable_sizes=None, layer_structure=None, add_layer_norm=False):
self.filename = None
self.name = name
self.layers = {}
self.step = 0
self.sd_checkpoint = None
self.sd_checkpoint_name = None
self.layer_structure = layer_structure
self.add_layer_norm = add_layer_norm
for size in enable_sizes or []:
self.layers[size] = (
HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm),
HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm),
)
def weights(self):
res = []
for k, layers in self.layers.items():
for layer in layers:
layer.train()
res += layer.trainables()
return res
def save(self, filename):
state_dict = {}
for k, v in self.layers.items():
state_dict[k] = (v[0].state_dict(), v[1].state_dict())
state_dict['step'] = self.step
state_dict['name'] = self.name
state_dict['layer_structure'] = self.layer_structure
state_dict['is_layer_norm'] = self.add_layer_norm
state_dict['sd_checkpoint'] = self.sd_checkpoint
state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
torch.save(state_dict, filename)
def load(self, filename):
self.filename = filename
if self.name is None:
self.name = os.path.splitext(os.path.basename(filename))[0]
state_dict = torch.load(filename, map_location='cpu')
self.layer_structure = state_dict.get('layer_structure', [1, 2, 1])
self.add_layer_norm = state_dict.get('is_layer_norm', False)
for size, sd in state_dict.items():
if type(size) == int:
self.layers[size] = (
HypernetworkModule(size, sd[0], self.layer_structure, self.add_layer_norm),
HypernetworkModule(size, sd[1], self.layer_structure, self.add_layer_norm),
)
self.name = state_dict.get('name', self.name)
self.step = state_dict.get('step', 0)
self.sd_checkpoint = state_dict.get('sd_checkpoint', None)
self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None)
def list_hypernetworks(path):
res = {}
for filename in glob.iglob(os.path.join(path, '**/*.pt'), recursive=True):
name = os.path.splitext(os.path.basename(filename))[0]
res[name] = filename
return res
def load_hypernetwork(filename):
path = shared.hypernetworks.get(filename, None)
if path is not None:
print(f"Loading hypernetwork {filename}")
try:
shared.loaded_hypernetwork = Hypernetwork()
shared.loaded_hypernetwork.load(path)
except Exception:
print(f"Error loading hypernetwork {path}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
else:
if shared.loaded_hypernetwork is not None:
print(f"Unloading hypernetwork")
shared.loaded_hypernetwork = None
def find_closest_hypernetwork_name(search: str):
if not search:
return None
search = search.lower()
applicable = [name for name in shared.hypernetworks if search in name.lower()]
if not applicable:
return None
applicable = sorted(applicable, key=lambda name: len(name))
return applicable[0]
def apply_hypernetwork(hypernetwork, context, layer=None):
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
if hypernetwork_layers is None:
return context, context
if layer is not None:
layer.hyper_k = hypernetwork_layers[0]
layer.hyper_v = hypernetwork_layers[1]
context_k = hypernetwork_layers[0](context)
context_v = hypernetwork_layers[1](context)
return context_k, context_v
def attention_CrossAttention_forward(self, x, context=None, mask=None):
h = self.heads
q = self.to_q(x)
context = default(context, x)
context_k, context_v = apply_hypernetwork(shared.loaded_hypernetwork, context, self)
k = self.to_k(context_k)
v = self.to_v(context_v)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
if mask is not None:
mask = rearrange(mask, 'b ... -> b (...)')
max_neg_value = -torch.finfo(sim.dtype).max
mask = repeat(mask, 'b j -> (b h) () j', h=h)
sim.masked_fill_(~mask, max_neg_value)
# attention, what we cannot get enough of
attn = sim.softmax(dim=-1)
out = einsum('b i j, b j d -> b i d', attn, v)
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
return self.to_out(out)
def stack_conds(conds):
if len(conds) == 1:
return torch.stack(conds)
# same as in reconstruct_multicond_batch
token_count = max([x.shape[0] for x in conds])
for i in range(len(conds)):
if conds[i].shape[0] != token_count:
last_vector = conds[i][-1:]
last_vector_repeated = last_vector.repeat([token_count - conds[i].shape[0], 1])
conds[i] = torch.vstack([conds[i], last_vector_repeated])
return torch.stack(conds)
def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
assert hypernetwork_name, 'hypernetwork not selected'
path = shared.hypernetworks.get(hypernetwork_name, None)
shared.loaded_hypernetwork = Hypernetwork()
shared.loaded_hypernetwork.load(path)
shared.state.textinfo = "Initializing hypernetwork training..."
shared.state.job_count = steps
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), hypernetwork_name)
unload = shared.opts.unload_models_when_training
if save_hypernetwork_every > 0:
hypernetwork_dir = os.path.join(log_directory, "hypernetworks")
os.makedirs(hypernetwork_dir, exist_ok=True)
else:
hypernetwork_dir = None
if create_image_every > 0:
images_dir = os.path.join(log_directory, "images")
os.makedirs(images_dir, exist_ok=True)
else:
images_dir = None
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
with torch.autocast("cuda"):
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size)
if unload:
shared.sd_model.cond_stage_model.to(devices.cpu)
shared.sd_model.first_stage_model.to(devices.cpu)
hypernetwork = shared.loaded_hypernetwork
weights = hypernetwork.weights()
for weight in weights:
weight.requires_grad = True
losses = torch.zeros((32,))
last_saved_file = "<none>"
last_saved_image = "<none>"
initial_step = hypernetwork.step or 0
if initial_step > steps:
return hypernetwork, filename
scheduler = LearnRateScheduler(learn_rate, steps, initial_step)
optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate)
if shared.opts.training_enable_tensorboard:
tensorboard_writer = textual_inversion.tensorboard_setup(log_directory)
pbar = tqdm.tqdm(enumerate(ds), total=steps - initial_step)
for i, entries in pbar:
hypernetwork.step = i + initial_step
scheduler.apply(optimizer, hypernetwork.step)
if scheduler.finished:
break
if shared.state.interrupted:
break
with torch.autocast("cuda"):
c = stack_conds([entry.cond for entry in entries]).to(devices.device)
# c = torch.vstack([entry.cond for entry in entries]).to(devices.device)
x = torch.stack([entry.latent for entry in entries]).to(devices.device)
loss = shared.sd_model(x, c)[0]
del x
del c
losses[hypernetwork.step % losses.shape[0]] = loss.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
mean_loss = losses.mean()
if torch.isnan(mean_loss):
raise RuntimeError("Loss diverged.")
pbar.set_description(f"loss: {mean_loss:.7f}")
if hypernetwork.step > 0 and hypernetwork_dir is not None and hypernetwork.step % save_hypernetwork_every == 0:
last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name}-{hypernetwork.step}.pt')
hypernetwork.save(last_saved_file)
if shared.opts.training_enable_tensorboard:
epoch_num = hypernetwork.step // len(ds)
epoch_step = hypernetwork.step - (epoch_num * len(ds)) + 1
textual_inversion.tensorboard_add(tensorboard_writer, loss=mean_loss,
global_step=hypernetwork.step, step=epoch_step,
learn_rate=scheduler.learn_rate, epoch_num=epoch_num)
textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), {
"loss": f"{mean_loss:.7f}",
"learn_rate": scheduler.learn_rate
})
if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0:
last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png')
optimizer.zero_grad()
shared.sd_model.cond_stage_model.to(devices.device)
shared.sd_model.first_stage_model.to(devices.device)
p = processing.StableDiffusionProcessingTxt2Img(
sd_model=shared.sd_model,
do_not_save_grid=True,
do_not_save_samples=True,
)
if preview_from_txt2img:
p.prompt = preview_prompt
p.negative_prompt = preview_negative_prompt
p.steps = preview_steps
p.sampler_index = preview_sampler_index
p.cfg_scale = preview_cfg_scale
p.seed = preview_seed
p.width = preview_width
p.height = preview_height
else:
p.prompt = entries[0].cond_text
p.steps = 20
preview_text = p.prompt
processed = processing.process_images(p)
image = processed.images[0] if len(processed.images)>0 else None
if shared.opts.training_enable_tensorboard and shared.opts.training_tensorboard_save_images:
textual_inversion.tensorboard_add_image(tensorboard_writer, f"Validation at epoch {epoch_num}",
image, hypernetwork.step)
if unload:
shared.sd_model.cond_stage_model.to(devices.cpu)
shared.sd_model.first_stage_model.to(devices.cpu)
if image is not None:
shared.state.current_image = image
image.save(last_saved_image)
last_saved_image += f", prompt: {preview_text}"
shared.state.job_no = hypernetwork.step
shared.state.textinfo = f"""
<p>
Loss: {mean_loss:.7f}<br/>
Step: {hypernetwork.step}<br/>
Last prompt: {html.escape(entries[0].cond_text)}<br/>
Last saved embedding: {html.escape(last_saved_file)}<br/>
Last saved image: {html.escape(last_saved_image)}<br/>
</p>
"""
checkpoint = sd_models.select_checkpoint()
hypernetwork.sd_checkpoint = checkpoint.hash
hypernetwork.sd_checkpoint_name = checkpoint.model_name
hypernetwork.save(filename)
return hypernetwork, filename