434 lines
16 KiB
Python
434 lines
16 KiB
Python
import os
|
|
import sys
|
|
import traceback
|
|
|
|
import torch
|
|
import tqdm
|
|
import html
|
|
import datetime
|
|
|
|
from PIL import Image,PngImagePlugin,ImageDraw
|
|
from ..images import captionImageOverlay
|
|
import numpy as np
|
|
import base64
|
|
import json
|
|
import zlib
|
|
|
|
from modules import shared, devices, sd_hijack, processing, sd_models
|
|
import modules.textual_inversion.dataset
|
|
|
|
class EmbeddingEncoder(json.JSONEncoder):
|
|
def default(self, obj):
|
|
if isinstance(obj, torch.Tensor):
|
|
return {'TORCHTENSOR':obj.cpu().detach().numpy().tolist()}
|
|
return json.JSONEncoder.default(self, obj)
|
|
|
|
class EmbeddingDecoder(json.JSONDecoder):
|
|
def __init__(self, *args, **kwargs):
|
|
json.JSONDecoder.__init__(self, object_hook=self.object_hook, *args, **kwargs)
|
|
def object_hook(self, d):
|
|
if 'TORCHTENSOR' in d:
|
|
return torch.from_numpy(np.array(d['TORCHTENSOR']))
|
|
return d
|
|
|
|
def embeddingToB64(data):
|
|
d = json.dumps(data,cls=EmbeddingEncoder)
|
|
return base64.b64encode(d.encode())
|
|
|
|
def embeddingFromB64(data):
|
|
d = base64.b64decode(data)
|
|
return json.loads(d,cls=EmbeddingDecoder)
|
|
|
|
def lcg(m=2**32, a=1664525, c=1013904223, seed=0):
|
|
while True:
|
|
seed = (a * seed + c) % m
|
|
yield seed
|
|
|
|
def xorBlock(block):
|
|
g = lcg()
|
|
randblock = np.array([next(g) for _ in range(np.product(block.shape))]).astype(np.uint8).reshape(block.shape)
|
|
return np.bitwise_xor(block.astype(np.uint8),randblock & 0x0F)
|
|
|
|
def styleBlock(block,sequence):
|
|
im = Image.new('RGB',(block.shape[1],block.shape[0]))
|
|
draw = ImageDraw.Draw(im)
|
|
i=0
|
|
for x in range(-6,im.size[0],8):
|
|
for yi,y in enumerate(range(-6,im.size[1],8)):
|
|
offset=0
|
|
if yi%2==0:
|
|
offset=4
|
|
shade = sequence[i%len(sequence)]
|
|
i+=1
|
|
draw.ellipse((x+offset, y, x+6+offset, y+6), fill =(shade,shade,shade) )
|
|
|
|
fg = np.array(im).astype(np.uint8) & 0xF0
|
|
return block ^ fg
|
|
|
|
def insertImageDataEmbed(image,data):
|
|
d = 3
|
|
data_compressed = zlib.compress( json.dumps(data,cls=EmbeddingEncoder).encode(),level=9)
|
|
dnp = np.frombuffer(data_compressed,np.uint8).copy()
|
|
dnphigh = dnp >> 4
|
|
dnplow = dnp & 0x0F
|
|
|
|
h = image.size[1]
|
|
next_size = dnplow.shape[0] + (h-(dnplow.shape[0]%h))
|
|
next_size = next_size + ((h*d)-(next_size%(h*d)))
|
|
|
|
dnplow.resize(next_size)
|
|
dnplow = dnplow.reshape((h,-1,d))
|
|
|
|
dnphigh.resize(next_size)
|
|
dnphigh = dnphigh.reshape((h,-1,d))
|
|
|
|
edgeStyleWeights = list(data['string_to_param'].values())[0].cpu().detach().numpy().tolist()[0][:1024]
|
|
edgeStyleWeights = (np.abs(edgeStyleWeights)/np.max(np.abs(edgeStyleWeights))*255).astype(np.uint8)
|
|
|
|
dnplow = styleBlock(dnplow,sequence=edgeStyleWeights)
|
|
dnplow = xorBlock(dnplow)
|
|
dnphigh = styleBlock(dnphigh,sequence=edgeStyleWeights[::-1])
|
|
dnphigh = xorBlock(dnphigh)
|
|
|
|
imlow = Image.fromarray(dnplow,mode='RGB')
|
|
imhigh = Image.fromarray(dnphigh,mode='RGB')
|
|
|
|
background = Image.new('RGB',(image.size[0]+imlow.size[0]+imhigh.size[0]+2,image.size[1]),(0,0,0))
|
|
background.paste(imlow,(0,0))
|
|
background.paste(image,(imlow.size[0]+1,0))
|
|
background.paste(imhigh,(imlow.size[0]+1+image.size[0]+1,0))
|
|
|
|
return background
|
|
|
|
def crop_black(img,tol=0):
|
|
mask = (img>tol).all(2)
|
|
mask0,mask1 = mask.any(0),mask.any(1)
|
|
col_start,col_end = mask0.argmax(),mask.shape[1]-mask0[::-1].argmax()
|
|
row_start,row_end = mask1.argmax(),mask.shape[0]-mask1[::-1].argmax()
|
|
return img[row_start:row_end,col_start:col_end]
|
|
|
|
def extractImageDataEmbed(image):
|
|
d=3
|
|
outarr = crop_black(np.array(image.convert('RGB').getdata()).reshape(image.size[1],image.size[0],d ).astype(np.uint8) ) & 0x0F
|
|
blackCols = np.where( np.sum(outarr, axis=(0,2))==0)
|
|
if blackCols[0].shape[0] < 2:
|
|
print('No Image data blocks found.')
|
|
return None
|
|
|
|
dataBlocklower = outarr[:,:blackCols[0].min(),:].astype(np.uint8)
|
|
dataBlockupper = outarr[:,blackCols[0].max()+1:,:].astype(np.uint8)
|
|
|
|
dataBlocklower = xorBlock(dataBlocklower)
|
|
dataBlockupper = xorBlock(dataBlockupper)
|
|
|
|
dataBlock = (dataBlockupper << 4) | (dataBlocklower)
|
|
dataBlock = dataBlock.flatten().tobytes()
|
|
data = zlib.decompress(dataBlock)
|
|
return json.loads(data,cls=EmbeddingDecoder)
|
|
|
|
class Embedding:
|
|
def __init__(self, vec, name, step=None):
|
|
self.vec = vec
|
|
self.name = name
|
|
self.step = step
|
|
self.cached_checksum = None
|
|
self.sd_checkpoint = None
|
|
self.sd_checkpoint_name = None
|
|
|
|
def save(self, filename):
|
|
embedding_data = {
|
|
"string_to_token": {"*": 265},
|
|
"string_to_param": {"*": self.vec},
|
|
"name": self.name,
|
|
"step": self.step,
|
|
"sd_checkpoint": self.sd_checkpoint,
|
|
"sd_checkpoint_name": self.sd_checkpoint_name,
|
|
}
|
|
|
|
torch.save(embedding_data, filename)
|
|
|
|
def checksum(self):
|
|
if self.cached_checksum is not None:
|
|
return self.cached_checksum
|
|
|
|
def const_hash(a):
|
|
r = 0
|
|
for v in a:
|
|
r = (r * 281 ^ int(v) * 997) & 0xFFFFFFFF
|
|
return r
|
|
|
|
self.cached_checksum = f'{const_hash(self.vec.reshape(-1) * 100) & 0xffff:04x}'
|
|
return self.cached_checksum
|
|
|
|
|
|
class EmbeddingDatabase:
|
|
def __init__(self, embeddings_dir):
|
|
self.ids_lookup = {}
|
|
self.word_embeddings = {}
|
|
self.dir_mtime = None
|
|
self.embeddings_dir = embeddings_dir
|
|
|
|
def register_embedding(self, embedding, model):
|
|
|
|
self.word_embeddings[embedding.name] = embedding
|
|
|
|
ids = model.cond_stage_model.tokenizer([embedding.name], add_special_tokens=False)['input_ids'][0]
|
|
|
|
first_id = ids[0]
|
|
if first_id not in self.ids_lookup:
|
|
self.ids_lookup[first_id] = []
|
|
|
|
self.ids_lookup[first_id] = sorted(self.ids_lookup[first_id] + [(ids, embedding)], key=lambda x: len(x[0]), reverse=True)
|
|
|
|
return embedding
|
|
|
|
def load_textual_inversion_embeddings(self):
|
|
mt = os.path.getmtime(self.embeddings_dir)
|
|
if self.dir_mtime is not None and mt <= self.dir_mtime:
|
|
return
|
|
|
|
self.dir_mtime = mt
|
|
self.ids_lookup.clear()
|
|
self.word_embeddings.clear()
|
|
|
|
def process_file(path, filename):
|
|
name = os.path.splitext(filename)[0]
|
|
|
|
data = []
|
|
|
|
if filename.upper().endswith('.PNG'):
|
|
embed_image = Image.open(path)
|
|
if 'sd-ti-embedding' in embed_image.text:
|
|
data = embeddingFromB64(embed_image.text['sd-ti-embedding'])
|
|
name = data.get('name',name)
|
|
else:
|
|
data = extractImageDataEmbed(embed_image)
|
|
name = data.get('name',name)
|
|
else:
|
|
data = torch.load(path, map_location="cpu")
|
|
|
|
# textual inversion embeddings
|
|
if 'string_to_param' in data:
|
|
param_dict = data['string_to_param']
|
|
if hasattr(param_dict, '_parameters'):
|
|
param_dict = getattr(param_dict, '_parameters') # fix for torch 1.12.1 loading saved file from torch 1.11
|
|
assert len(param_dict) == 1, 'embedding file has multiple terms in it'
|
|
emb = next(iter(param_dict.items()))[1]
|
|
# diffuser concepts
|
|
elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor:
|
|
assert len(data.keys()) == 1, 'embedding file has multiple terms in it'
|
|
|
|
emb = next(iter(data.values()))
|
|
if len(emb.shape) == 1:
|
|
emb = emb.unsqueeze(0)
|
|
else:
|
|
raise Exception(f"Couldn't identify {filename} as neither textual inversion embedding nor diffuser concept.")
|
|
|
|
vec = emb.detach().to(devices.device, dtype=torch.float32)
|
|
embedding = Embedding(vec, name)
|
|
embedding.step = data.get('step', None)
|
|
embedding.sd_checkpoint = data.get('hash', None)
|
|
embedding.sd_checkpoint_name = data.get('sd_checkpoint_name', None)
|
|
self.register_embedding(embedding, shared.sd_model)
|
|
|
|
for fn in os.listdir(self.embeddings_dir):
|
|
try:
|
|
fullfn = os.path.join(self.embeddings_dir, fn)
|
|
|
|
if os.stat(fullfn).st_size == 0:
|
|
continue
|
|
|
|
process_file(fullfn, fn)
|
|
except Exception:
|
|
print(f"Error loading emedding {fn}:", file=sys.stderr)
|
|
print(traceback.format_exc(), file=sys.stderr)
|
|
continue
|
|
|
|
print(f"Loaded a total of {len(self.word_embeddings)} textual inversion embeddings.")
|
|
|
|
def find_embedding_at_position(self, tokens, offset):
|
|
token = tokens[offset]
|
|
possible_matches = self.ids_lookup.get(token, None)
|
|
|
|
if possible_matches is None:
|
|
return None, None
|
|
|
|
for ids, embedding in possible_matches:
|
|
if tokens[offset:offset + len(ids)] == ids:
|
|
return embedding, len(ids)
|
|
|
|
return None, None
|
|
|
|
|
|
def create_embedding(name, num_vectors_per_token, init_text='*'):
|
|
cond_model = shared.sd_model.cond_stage_model
|
|
embedding_layer = cond_model.wrapped.transformer.text_model.embeddings
|
|
|
|
ids = cond_model.tokenizer(init_text, max_length=num_vectors_per_token, return_tensors="pt", add_special_tokens=False)["input_ids"]
|
|
embedded = embedding_layer.token_embedding.wrapped(ids.to(devices.device)).squeeze(0)
|
|
vec = torch.zeros((num_vectors_per_token, embedded.shape[1]), device=devices.device)
|
|
|
|
for i in range(num_vectors_per_token):
|
|
vec[i] = embedded[i * int(embedded.shape[0]) // num_vectors_per_token]
|
|
|
|
fn = os.path.join(shared.cmd_opts.embeddings_dir, f"{name}.pt")
|
|
assert not os.path.exists(fn), f"file {fn} already exists"
|
|
|
|
embedding = Embedding(vec, name)
|
|
embedding.step = 0
|
|
embedding.save(fn)
|
|
|
|
return fn
|
|
|
|
|
|
|
|
def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, num_repeats, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_image_prompt)
|
|
assert embedding_name, 'embedding not selected'
|
|
|
|
shared.state.textinfo = "Initializing textual inversion training..."
|
|
shared.state.job_count = steps
|
|
|
|
filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt')
|
|
|
|
log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), embedding_name)
|
|
|
|
if save_embedding_every > 0:
|
|
embedding_dir = os.path.join(log_directory, "embeddings")
|
|
os.makedirs(embedding_dir, exist_ok=True)
|
|
else:
|
|
embedding_dir = None
|
|
|
|
if create_image_every > 0:
|
|
images_dir = os.path.join(log_directory, "images")
|
|
os.makedirs(images_dir, exist_ok=True)
|
|
else:
|
|
images_dir = None
|
|
|
|
if create_image_every > 0 and save_image_with_stored_embedding:
|
|
images_embeds_dir = os.path.join(log_directory, "image_embeddings")
|
|
os.makedirs(images_embeds_dir, exist_ok=True)
|
|
else:
|
|
images_embeds_dir = None
|
|
|
|
cond_model = shared.sd_model.cond_stage_model
|
|
|
|
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
|
|
with torch.autocast("cuda"):
|
|
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=num_repeats, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file)
|
|
|
|
hijack = sd_hijack.model_hijack
|
|
|
|
embedding = hijack.embedding_db.word_embeddings[embedding_name]
|
|
embedding.vec.requires_grad = True
|
|
|
|
optimizer = torch.optim.AdamW([embedding.vec], lr=learn_rate)
|
|
|
|
losses = torch.zeros((32,))
|
|
|
|
last_saved_file = "<none>"
|
|
last_saved_image = "<none>"
|
|
|
|
ititial_step = embedding.step or 0
|
|
if ititial_step > steps:
|
|
return embedding, filename
|
|
|
|
tr_img_len = len([os.path.join(data_root, file_path) for file_path in os.listdir(data_root)])
|
|
epoch_len = (tr_img_len * num_repeats) + tr_img_len
|
|
|
|
pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step)
|
|
for i, (x, text) in pbar:
|
|
embedding.step = i + ititial_step
|
|
|
|
if embedding.step > steps:
|
|
break
|
|
|
|
if shared.state.interrupted:
|
|
break
|
|
|
|
with torch.autocast("cuda"):
|
|
c = cond_model([text])
|
|
|
|
x = x.to(devices.device)
|
|
loss = shared.sd_model(x.unsqueeze(0), c)[0]
|
|
del x
|
|
|
|
losses[embedding.step % losses.shape[0]] = loss.item()
|
|
|
|
optimizer.zero_grad()
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
epoch_num = embedding.step // epoch_len
|
|
epoch_step = embedding.step - (epoch_num * epoch_len) + 1
|
|
|
|
pbar.set_description(f"[Epoch {epoch_num}: {epoch_step}/{epoch_len}]loss: {losses.mean():.7f}")
|
|
|
|
if embedding.step > 0 and embedding_dir is not None and embedding.step % save_embedding_every == 0:
|
|
last_saved_file = os.path.join(embedding_dir, f'{embedding_name}-{embedding.step}.pt')
|
|
embedding.save(last_saved_file)
|
|
|
|
if embedding.step > 0 and images_dir is not None and embedding.step % create_image_every == 0:
|
|
last_saved_image = os.path.join(images_dir, f'{embedding_name}-{embedding.step}.png')
|
|
|
|
preview_text = text if preview_image_prompt == "" else preview_image_prompt
|
|
|
|
p = processing.StableDiffusionProcessingTxt2Img(
|
|
sd_model=shared.sd_model,
|
|
prompt=preview_text,
|
|
steps=20,
|
|
height=training_height,
|
|
width=training_width,
|
|
do_not_save_grid=True,
|
|
do_not_save_samples=True,
|
|
)
|
|
|
|
processed = processing.process_images(p)
|
|
image = processed.images[0]
|
|
|
|
shared.state.current_image = image
|
|
|
|
if save_image_with_stored_embedding and os.path.exists(last_saved_file):
|
|
|
|
last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{embedding.step}.png')
|
|
|
|
info = PngImagePlugin.PngInfo()
|
|
data = torch.load(last_saved_file)
|
|
info.add_text("sd-ti-embedding", embeddingToB64(data))
|
|
|
|
title = "<{}>".format(data.get('name','???'))
|
|
checkpoint = sd_models.select_checkpoint()
|
|
footer_left = checkpoint.model_name
|
|
footer_mid = '[{}]'.format(checkpoint.hash)
|
|
footer_right = '{}'.format(embedding.step)
|
|
|
|
captioned_image = captionImageOverlay(image,title,footer_left,footer_mid,footer_right)
|
|
captioned_image = insertImageDataEmbed(captioned_image,data)
|
|
|
|
captioned_image.save(last_saved_image_chunks, "PNG", pnginfo=info)
|
|
|
|
image.save(last_saved_image)
|
|
|
|
last_saved_image += f", prompt: {preview_text}"
|
|
|
|
shared.state.job_no = embedding.step
|
|
|
|
shared.state.textinfo = f"""
|
|
<p>
|
|
Loss: {losses.mean():.7f}<br/>
|
|
Step: {embedding.step}<br/>
|
|
Last prompt: {html.escape(text)}<br/>
|
|
Last saved embedding: {html.escape(last_saved_file)}<br/>
|
|
Last saved image: {html.escape(last_saved_image)}<br/>
|
|
</p>
|
|
"""
|
|
|
|
checkpoint = sd_models.select_checkpoint()
|
|
|
|
embedding.sd_checkpoint = checkpoint.hash
|
|
embedding.sd_checkpoint_name = checkpoint.model_name
|
|
embedding.cached_checksum = None
|
|
embedding.save(filename)
|
|
|
|
return embedding, filename
|
|
|