stable-diffusion-webui/modules/api/api.py

172 lines
6.5 KiB
Python

from modules.api.processing import StableDiffusionTxt2ImgProcessingAPI, StableDiffusionImg2ImgProcessingAPI
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
from modules.sd_samplers import all_samplers
import modules.shared as shared
import uvicorn
from fastapi import APIRouter, HTTPException
import json
import io
import base64
from modules.api.models import *
from PIL import Image
from modules.extras import run_extras
from gradio import processing_utils
def upscaler_to_index(name: str):
try:
return [x.name.lower() for x in shared.sd_upscalers].index(name.lower())
except:
raise HTTPException(status_code=400, detail="Upscaler not found")
sampler_to_index = lambda name: next(filter(lambda row: name.lower() == row[1].name.lower(), enumerate(all_samplers)), None)
def img_to_base64(img: str):
buffer = io.BytesIO()
img.save(buffer, format="png")
return base64.b64encode(buffer.getvalue())
def base64_to_bytes(base64Img: str):
if "," in base64Img:
base64Img = base64Img.split(",")[1]
return io.BytesIO(base64.b64decode(base64Img))
def base64_to_images(base64Imgs: list[str]):
imgs = []
for img in base64Imgs:
img = Image.open(base64_to_bytes(img))
imgs.append(img)
return imgs
class ImageToImageResponse(BaseModel):
images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
parameters: Json
info: Json
class Api:
def __init__(self, app, queue_lock):
self.router = APIRouter()
self.app = app
self.queue_lock = queue_lock
self.app.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=TextToImageResponse)
self.app.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"])
self.app.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=ExtrasSingleImageResponse)
self.app.add_api_route("/sdapi/v1/extra-batch-image", self.extras_batch_images_api, methods=["POST"], response_model=ExtrasBatchImagesResponse)
def __base64_to_image(self, base64_string):
# if has a comma, deal with prefix
if "," in base64_string:
base64_string = base64_string.split(",")[1]
imgdata = base64.b64decode(base64_string)
# convert base64 to PIL image
return Image.open(io.BytesIO(imgdata))
def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
sampler_index = sampler_to_index(txt2imgreq.sampler_index)
if sampler_index is None:
raise HTTPException(status_code=404, detail="Sampler not found")
populate = txt2imgreq.copy(update={ # Override __init__ params
"sd_model": shared.sd_model,
"sampler_index": sampler_index[0],
"do_not_save_samples": True,
"do_not_save_grid": True
}
)
p = StableDiffusionProcessingTxt2Img(**vars(populate))
# Override object param
with self.queue_lock:
processed = process_images(p)
b64images = list(map(img_to_base64, processed.images))
return TextToImageResponse(images=b64images, parameters=json.dumps(vars(txt2imgreq)), info=json.dumps(processed.info))
def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI):
sampler_index = sampler_to_index(img2imgreq.sampler_index)
if sampler_index is None:
raise HTTPException(status_code=404, detail="Sampler not found")
init_images = img2imgreq.init_images
if init_images is None:
raise HTTPException(status_code=404, detail="Init image not found")
mask = img2imgreq.mask
if mask:
mask = self.__base64_to_image(mask)
populate = img2imgreq.copy(update={ # Override __init__ params
"sd_model": shared.sd_model,
"sampler_index": sampler_index[0],
"do_not_save_samples": True,
"do_not_save_grid": True,
"mask": mask
}
)
p = StableDiffusionProcessingImg2Img(**vars(populate))
imgs = []
for img in init_images:
img = self.__base64_to_image(img)
imgs = [img] * p.batch_size
p.init_images = imgs
# Override object param
with self.queue_lock:
processed = process_images(p)
b64images = []
for i in processed.images:
buffer = io.BytesIO()
i.save(buffer, format="png")
b64images.append(base64.b64encode(buffer.getvalue()))
return ImageToImageResponse(images=b64images, parameters=json.dumps(vars(img2imgreq)), info=json.dumps(processed.info))
def extras_single_image_api(self, req: ExtrasSingleImageRequest):
upscaler1Index = upscaler_to_index(req.upscaler_1)
upscaler2Index = upscaler_to_index(req.upscaler_2)
reqDict = vars(req)
reqDict.pop('upscaler_1')
reqDict.pop('upscaler_2')
reqDict['image'] = processing_utils.decode_base64_to_file(reqDict['image'])
with self.queue_lock:
result = run_extras(**reqDict, extras_upscaler_1=upscaler1Index, extras_upscaler_2=upscaler2Index, extras_mode=0, image_folder="", input_dir="", output_dir="")
return ExtrasSingleImageResponse(image=processing_utils.encode_pil_to_base64(result[0]), html_info_x=result[1], html_info=result[2])
def extras_batch_images_api(self, req: ExtrasBatchImagesRequest):
upscaler1Index = upscaler_to_index(req.upscaler_1)
upscaler2Index = upscaler_to_index(req.upscaler_2)
reqDict = vars(req)
reqDict.pop('upscaler_1')
reqDict.pop('upscaler_2')
reqDict['image_folder'] = list(map(processing_utils.decode_base64_to_file, reqDict['imageList']))
reqDict.pop('imageList')
with self.queue_lock:
result = run_extras(**reqDict, extras_upscaler_1=upscaler1Index, extras_upscaler_2=upscaler2Index, extras_mode=1, image="", input_dir="", output_dir="")
return ExtrasBatchImagesResponse(images=list(map(processing_utils.encode_pil_to_base64, result[0])), html_info_x=result[1], html_info=result[2])
def extras_folder_processing_api(self):
raise NotImplementedError
def pnginfoapi(self):
raise NotImplementedError
def launch(self, server_name, port):
self.app.include_router(self.router)
uvicorn.run(self.app, host=server_name, port=port)