stable-diffusion-webui/ldm/modules/image_degradation/bsrgan_light.py
zhaohu xing 75c4511e6b add AltDiffusion to webui
Signed-off-by: zhaohu xing <920232796@qq.com>
2022-11-29 10:28:41 +08:00

651 lines
22 KiB
Python

# -*- coding: utf-8 -*-
import numpy as np
import cv2
import torch
from functools import partial
import random
from scipy import ndimage
import scipy
import scipy.stats as ss
from scipy.interpolate import interp2d
from scipy.linalg import orth
import albumentations
import ldm.modules.image_degradation.utils_image as util
"""
# --------------------------------------------
# Super-Resolution
# --------------------------------------------
#
# Kai Zhang (cskaizhang@gmail.com)
# https://github.com/cszn
# From 2019/03--2021/08
# --------------------------------------------
"""
def modcrop_np(img, sf):
'''
Args:
img: numpy image, WxH or WxHxC
sf: scale factor
Return:
cropped image
'''
w, h = img.shape[:2]
im = np.copy(img)
return im[:w - w % sf, :h - h % sf, ...]
"""
# --------------------------------------------
# anisotropic Gaussian kernels
# --------------------------------------------
"""
def analytic_kernel(k):
"""Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
k_size = k.shape[0]
# Calculate the big kernels size
big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
# Loop over the small kernel to fill the big one
for r in range(k_size):
for c in range(k_size):
big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
# Crop the edges of the big kernel to ignore very small values and increase run time of SR
crop = k_size // 2
cropped_big_k = big_k[crop:-crop, crop:-crop]
# Normalize to 1
return cropped_big_k / cropped_big_k.sum()
def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
""" generate an anisotropic Gaussian kernel
Args:
ksize : e.g., 15, kernel size
theta : [0, pi], rotation angle range
l1 : [0.1,50], scaling of eigenvalues
l2 : [0.1,l1], scaling of eigenvalues
If l1 = l2, will get an isotropic Gaussian kernel.
Returns:
k : kernel
"""
v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
V = np.array([[v[0], v[1]], [v[1], -v[0]]])
D = np.array([[l1, 0], [0, l2]])
Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
return k
def gm_blur_kernel(mean, cov, size=15):
center = size / 2.0 + 0.5
k = np.zeros([size, size])
for y in range(size):
for x in range(size):
cy = y - center + 1
cx = x - center + 1
k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
k = k / np.sum(k)
return k
def shift_pixel(x, sf, upper_left=True):
"""shift pixel for super-resolution with different scale factors
Args:
x: WxHxC or WxH
sf: scale factor
upper_left: shift direction
"""
h, w = x.shape[:2]
shift = (sf - 1) * 0.5
xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
if upper_left:
x1 = xv + shift
y1 = yv + shift
else:
x1 = xv - shift
y1 = yv - shift
x1 = np.clip(x1, 0, w - 1)
y1 = np.clip(y1, 0, h - 1)
if x.ndim == 2:
x = interp2d(xv, yv, x)(x1, y1)
if x.ndim == 3:
for i in range(x.shape[-1]):
x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
return x
def blur(x, k):
'''
x: image, NxcxHxW
k: kernel, Nx1xhxw
'''
n, c = x.shape[:2]
p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
k = k.repeat(1, c, 1, 1)
k = k.view(-1, 1, k.shape[2], k.shape[3])
x = x.view(1, -1, x.shape[2], x.shape[3])
x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
x = x.view(n, c, x.shape[2], x.shape[3])
return x
def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
""""
# modified version of https://github.com/assafshocher/BlindSR_dataset_generator
# Kai Zhang
# min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
# max_var = 2.5 * sf
"""
# Set random eigen-vals (lambdas) and angle (theta) for COV matrix
lambda_1 = min_var + np.random.rand() * (max_var - min_var)
lambda_2 = min_var + np.random.rand() * (max_var - min_var)
theta = np.random.rand() * np.pi # random theta
noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
# Set COV matrix using Lambdas and Theta
LAMBDA = np.diag([lambda_1, lambda_2])
Q = np.array([[np.cos(theta), -np.sin(theta)],
[np.sin(theta), np.cos(theta)]])
SIGMA = Q @ LAMBDA @ Q.T
INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
# Set expectation position (shifting kernel for aligned image)
MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
MU = MU[None, None, :, None]
# Create meshgrid for Gaussian
[X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
Z = np.stack([X, Y], 2)[:, :, :, None]
# Calcualte Gaussian for every pixel of the kernel
ZZ = Z - MU
ZZ_t = ZZ.transpose(0, 1, 3, 2)
raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
# shift the kernel so it will be centered
# raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
# Normalize the kernel and return
# kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
kernel = raw_kernel / np.sum(raw_kernel)
return kernel
def fspecial_gaussian(hsize, sigma):
hsize = [hsize, hsize]
siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
std = sigma
[x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
arg = -(x * x + y * y) / (2 * std * std)
h = np.exp(arg)
h[h < scipy.finfo(float).eps * h.max()] = 0
sumh = h.sum()
if sumh != 0:
h = h / sumh
return h
def fspecial_laplacian(alpha):
alpha = max([0, min([alpha, 1])])
h1 = alpha / (alpha + 1)
h2 = (1 - alpha) / (alpha + 1)
h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
h = np.array(h)
return h
def fspecial(filter_type, *args, **kwargs):
'''
python code from:
https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
'''
if filter_type == 'gaussian':
return fspecial_gaussian(*args, **kwargs)
if filter_type == 'laplacian':
return fspecial_laplacian(*args, **kwargs)
"""
# --------------------------------------------
# degradation models
# --------------------------------------------
"""
def bicubic_degradation(x, sf=3):
'''
Args:
x: HxWxC image, [0, 1]
sf: down-scale factor
Return:
bicubicly downsampled LR image
'''
x = util.imresize_np(x, scale=1 / sf)
return x
def srmd_degradation(x, k, sf=3):
''' blur + bicubic downsampling
Args:
x: HxWxC image, [0, 1]
k: hxw, double
sf: down-scale factor
Return:
downsampled LR image
Reference:
@inproceedings{zhang2018learning,
title={Learning a single convolutional super-resolution network for multiple degradations},
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
pages={3262--3271},
year={2018}
}
'''
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
x = bicubic_degradation(x, sf=sf)
return x
def dpsr_degradation(x, k, sf=3):
''' bicubic downsampling + blur
Args:
x: HxWxC image, [0, 1]
k: hxw, double
sf: down-scale factor
Return:
downsampled LR image
Reference:
@inproceedings{zhang2019deep,
title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
pages={1671--1681},
year={2019}
}
'''
x = bicubic_degradation(x, sf=sf)
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
return x
def classical_degradation(x, k, sf=3):
''' blur + downsampling
Args:
x: HxWxC image, [0, 1]/[0, 255]
k: hxw, double
sf: down-scale factor
Return:
downsampled LR image
'''
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
# x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
st = 0
return x[st::sf, st::sf, ...]
def add_sharpening(img, weight=0.5, radius=50, threshold=10):
"""USM sharpening. borrowed from real-ESRGAN
Input image: I; Blurry image: B.
1. K = I + weight * (I - B)
2. Mask = 1 if abs(I - B) > threshold, else: 0
3. Blur mask:
4. Out = Mask * K + (1 - Mask) * I
Args:
img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
weight (float): Sharp weight. Default: 1.
radius (float): Kernel size of Gaussian blur. Default: 50.
threshold (int):
"""
if radius % 2 == 0:
radius += 1
blur = cv2.GaussianBlur(img, (radius, radius), 0)
residual = img - blur
mask = np.abs(residual) * 255 > threshold
mask = mask.astype('float32')
soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
K = img + weight * residual
K = np.clip(K, 0, 1)
return soft_mask * K + (1 - soft_mask) * img
def add_blur(img, sf=4):
wd2 = 4.0 + sf
wd = 2.0 + 0.2 * sf
wd2 = wd2/4
wd = wd/4
if random.random() < 0.5:
l1 = wd2 * random.random()
l2 = wd2 * random.random()
k = anisotropic_Gaussian(ksize=random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
else:
k = fspecial('gaussian', random.randint(2, 4) + 3, wd * random.random())
img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
return img
def add_resize(img, sf=4):
rnum = np.random.rand()
if rnum > 0.8: # up
sf1 = random.uniform(1, 2)
elif rnum < 0.7: # down
sf1 = random.uniform(0.5 / sf, 1)
else:
sf1 = 1.0
img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
img = np.clip(img, 0.0, 1.0)
return img
# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
# noise_level = random.randint(noise_level1, noise_level2)
# rnum = np.random.rand()
# if rnum > 0.6: # add color Gaussian noise
# img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
# elif rnum < 0.4: # add grayscale Gaussian noise
# img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
# else: # add noise
# L = noise_level2 / 255.
# D = np.diag(np.random.rand(3))
# U = orth(np.random.rand(3, 3))
# conv = np.dot(np.dot(np.transpose(U), D), U)
# img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
# img = np.clip(img, 0.0, 1.0)
# return img
def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
noise_level = random.randint(noise_level1, noise_level2)
rnum = np.random.rand()
if rnum > 0.6: # add color Gaussian noise
img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
elif rnum < 0.4: # add grayscale Gaussian noise
img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
else: # add noise
L = noise_level2 / 255.
D = np.diag(np.random.rand(3))
U = orth(np.random.rand(3, 3))
conv = np.dot(np.dot(np.transpose(U), D), U)
img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
img = np.clip(img, 0.0, 1.0)
return img
def add_speckle_noise(img, noise_level1=2, noise_level2=25):
noise_level = random.randint(noise_level1, noise_level2)
img = np.clip(img, 0.0, 1.0)
rnum = random.random()
if rnum > 0.6:
img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
elif rnum < 0.4:
img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
else:
L = noise_level2 / 255.
D = np.diag(np.random.rand(3))
U = orth(np.random.rand(3, 3))
conv = np.dot(np.dot(np.transpose(U), D), U)
img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
img = np.clip(img, 0.0, 1.0)
return img
def add_Poisson_noise(img):
img = np.clip((img * 255.0).round(), 0, 255) / 255.
vals = 10 ** (2 * random.random() + 2.0) # [2, 4]
if random.random() < 0.5:
img = np.random.poisson(img * vals).astype(np.float32) / vals
else:
img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
img += noise_gray[:, :, np.newaxis]
img = np.clip(img, 0.0, 1.0)
return img
def add_JPEG_noise(img):
quality_factor = random.randint(80, 95)
img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
img = cv2.imdecode(encimg, 1)
img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
return img
def random_crop(lq, hq, sf=4, lq_patchsize=64):
h, w = lq.shape[:2]
rnd_h = random.randint(0, h - lq_patchsize)
rnd_w = random.randint(0, w - lq_patchsize)
lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
return lq, hq
def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
"""
This is the degradation model of BSRGAN from the paper
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
----------
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
sf: scale factor
isp_model: camera ISP model
Returns
-------
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
"""
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
sf_ori = sf
h1, w1 = img.shape[:2]
img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
h, w = img.shape[:2]
if h < lq_patchsize * sf or w < lq_patchsize * sf:
raise ValueError(f'img size ({h1}X{w1}) is too small!')
hq = img.copy()
if sf == 4 and random.random() < scale2_prob: # downsample1
if np.random.rand() < 0.5:
img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
interpolation=random.choice([1, 2, 3]))
else:
img = util.imresize_np(img, 1 / 2, True)
img = np.clip(img, 0.0, 1.0)
sf = 2
shuffle_order = random.sample(range(7), 7)
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
if idx1 > idx2: # keep downsample3 last
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
for i in shuffle_order:
if i == 0:
img = add_blur(img, sf=sf)
elif i == 1:
img = add_blur(img, sf=sf)
elif i == 2:
a, b = img.shape[1], img.shape[0]
# downsample2
if random.random() < 0.75:
sf1 = random.uniform(1, 2 * sf)
img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
interpolation=random.choice([1, 2, 3]))
else:
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
k_shifted = shift_pixel(k, sf)
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
img = img[0::sf, 0::sf, ...] # nearest downsampling
img = np.clip(img, 0.0, 1.0)
elif i == 3:
# downsample3
img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
img = np.clip(img, 0.0, 1.0)
elif i == 4:
# add Gaussian noise
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=8)
elif i == 5:
# add JPEG noise
if random.random() < jpeg_prob:
img = add_JPEG_noise(img)
elif i == 6:
# add processed camera sensor noise
if random.random() < isp_prob and isp_model is not None:
with torch.no_grad():
img, hq = isp_model.forward(img.copy(), hq)
# add final JPEG compression noise
img = add_JPEG_noise(img)
# random crop
img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
return img, hq
# todo no isp_model?
def degradation_bsrgan_variant(image, sf=4, isp_model=None):
"""
This is the degradation model of BSRGAN from the paper
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
----------
sf: scale factor
isp_model: camera ISP model
Returns
-------
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
"""
image = util.uint2single(image)
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
sf_ori = sf
h1, w1 = image.shape[:2]
image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
h, w = image.shape[:2]
hq = image.copy()
if sf == 4 and random.random() < scale2_prob: # downsample1
if np.random.rand() < 0.5:
image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
interpolation=random.choice([1, 2, 3]))
else:
image = util.imresize_np(image, 1 / 2, True)
image = np.clip(image, 0.0, 1.0)
sf = 2
shuffle_order = random.sample(range(7), 7)
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
if idx1 > idx2: # keep downsample3 last
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
for i in shuffle_order:
if i == 0:
image = add_blur(image, sf=sf)
# elif i == 1:
# image = add_blur(image, sf=sf)
if i == 0:
pass
elif i == 2:
a, b = image.shape[1], image.shape[0]
# downsample2
if random.random() < 0.8:
sf1 = random.uniform(1, 2 * sf)
image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
interpolation=random.choice([1, 2, 3]))
else:
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
k_shifted = shift_pixel(k, sf)
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
image = image[0::sf, 0::sf, ...] # nearest downsampling
image = np.clip(image, 0.0, 1.0)
elif i == 3:
# downsample3
image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
image = np.clip(image, 0.0, 1.0)
elif i == 4:
# add Gaussian noise
image = add_Gaussian_noise(image, noise_level1=1, noise_level2=2)
elif i == 5:
# add JPEG noise
if random.random() < jpeg_prob:
image = add_JPEG_noise(image)
#
# elif i == 6:
# # add processed camera sensor noise
# if random.random() < isp_prob and isp_model is not None:
# with torch.no_grad():
# img, hq = isp_model.forward(img.copy(), hq)
# add final JPEG compression noise
image = add_JPEG_noise(image)
image = util.single2uint(image)
example = {"image": image}
return example
if __name__ == '__main__':
print("hey")
img = util.imread_uint('utils/test.png', 3)
img = img[:448, :448]
h = img.shape[0] // 4
print("resizing to", h)
sf = 4
deg_fn = partial(degradation_bsrgan_variant, sf=sf)
for i in range(20):
print(i)
img_hq = img
img_lq = deg_fn(img)["image"]
img_hq, img_lq = util.uint2single(img_hq), util.uint2single(img_lq)
print(img_lq)
img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img_hq)["image"]
print(img_lq.shape)
print("bicubic", img_lq_bicubic.shape)
print(img_hq.shape)
lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
interpolation=0)
lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic),
(int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
interpolation=0)
img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
util.imsave(img_concat, str(i) + '.png')