torchscale/examples/fairseq/tasks/data/mlm_loader.py

311 lines
11 KiB
Python
Raw Normal View History

2022-11-23 16:36:55 +00:00
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
2022-11-23 16:21:58 +00:00
import glob
import os
import torch
import numpy as np
import time
import json
import random
import itertools
import copy
from infinibatch import iterators
from .basic_loader import BaseBatchGen
from .utils import NativeCheckpointableIterator, WeightIterator
class MLMLoader(BaseBatchGen):
def __init__(
self,
args,
dataset,
dictionary,
tokenizer,
max_tokens=None,
max_sentences=None,
max_positions=None,
ignore_invalid_inputs=False,
required_batch_size_multiple=1,
seed=1,
num_shards=1,
shard_id=0,
):
super().__init__()
self.args = args
self.data = dataset.data
self.data_dir = dataset.data_dir
self.shuffle = dataset.shuffle
self.dictionary = dictionary
self.tokenizer = tokenizer
self.max_tokens = max_tokens
self.max_sentences = max_sentences
self.max_positions = max_positions
self.tokens_per_sample = args.tokens_per_sample
self.sample_break_mode = args.sample_break_mode
self.ignore_invalid_inputs = ignore_invalid_inputs
self.required_batch_size_multiple = required_batch_size_multiple
self.seed = str(seed)
self.num_shards = num_shards
self.shard_id = shard_id
self.batch_read_ahead = args.batch_read_ahead
self._build_iter()
def _build_iter(self):
tokenized_lines = self._multilingual_tokenize()
self.padded_batches = self._batchify(tokenized_lines)
prefetch_batches = iterators.PrefetchIterator(
self.padded_batches,
buffer_size=10000,
buffer_in_main_process=True,
log_empty_buffer_warning=True and self.shard_id == 0,
)
prefetch_batches = iterators.MapIterator(
prefetch_batches, self._move_to_tensor
)
self._iter = prefetch_batches
def _multilingual_tokenize(self):
multilingual_iters = []
weights = []
for data in self.data:
multilingual_iters.append(
self._tokenize(data)
)
if 'weight' in data:
weights.append(float(data['weight']))
else:
weights.append(int(data['count']))
if len(multilingual_iters) == 1:
return multilingual_iters[0]
sampling_iterator = WeightIterator(weights)
control_iterator = NativeCheckpointableIterator(sampling_iterator)
tokenized_lines = iterators.MultiplexIterator(control_iterator, multilingual_iters)
return tokenized_lines
def _tokenize(self, data):
'''
data:
{
'source': list[Path],
'source_lang': str,
'count': int,
'weight': float,
'name': str,
}
'''
dataset = list(
zip(
data['source'],
itertools.repeat(data['source_lang']),
)
)
if self.shuffle:
chunk_files = \
iterators.InfinitePermutationSourceIterator(
dataset,
seed=self.seed,
shuffle=self.shuffle,
num_instances=self.num_shards,
instance_rank=self.shard_id,
)
else:
chunk_files = \
iterators.ChunkedSourceIterator(
dataset,
num_instances=self.num_shards,
instance_rank=self.shard_id,
)
tokenized_lines = iterators.SelectManyIterator(chunk_files, lambda files: self._read_from_files(*files))
tokenized_lines = iterators.SamplingRandomMapIterator(tokenized_lines, self._prepare, self.seed)
return tokenized_lines
def _batchify(self, lines):
if self.max_sentences is not None:
if self.batch_read_ahead > 0:
lines = iterators.BlockwiseShuffleIterator(lines, self.batch_read_ahead, self.seed)
batches = iterators.FixedBatchIterator(lines, self.max_sentences)
else:
def dynamic_batch_size(sample):
lengths = [len(x) for x in sample]
batch_size = self.max_tokens // max(lengths) // self.required_batch_size_multiple * self.required_batch_size_multiple
return max(1, batch_size)
batches = iterators.BucketedReadaheadBatchIterator(
lines,
read_ahead=self.batch_read_ahead,
key=(lambda x: max(len(x[0]), len(x[1]))) if self.shuffle else None,
batch_size=dynamic_batch_size,
shuffle=self.shuffle,
seed=self.seed,
)
def collate(batch):
batch_size = len(batch)
mlm_source_max_length = max([len(x[0]) for x in batch])
mlm_target_max_length = max([len(x[1]) for x in batch])
s2s_source_max_length = max([len(x[2]) for x in batch])
s2s_target_max_length = max([len(x[3]) for x in batch])
mlm_source_ids = np.full(shape=(batch_size, mlm_source_max_length), dtype=np.int32,
fill_value=self.dictionary.pad())
mlm_target_ids = np.full(shape=(batch_size, mlm_target_max_length), dtype=np.int32,
fill_value=self.dictionary.pad())
s2s_source_ids = np.full(shape=(batch_size, s2s_source_max_length), dtype=np.int32,
fill_value=self.dictionary.pad())
s2s_target_ids = np.full(shape=(batch_size, s2s_target_max_length-1), dtype=np.int32,
fill_value=self.dictionary.pad())
s2s_prev_input_ids = np.full(shape=(batch_size, s2s_target_max_length-1), dtype=np.int32,
fill_value=self.dictionary.pad())
for i, (mlm_input_ids, mlm_label_ids, s2s_input_ids, s2s_label_ids) in enumerate(batch):
mlm_source_ids[i, :len(mlm_input_ids)] = mlm_input_ids
mlm_target_ids[i, :len(mlm_label_ids)] = mlm_label_ids
s2s_source_ids[i, :len(s2s_input_ids)] = s2s_input_ids
s2s_target_ids[i, :len(s2s_label_ids)-1] = s2s_label_ids[1:]
s2s_prev_input_ids[i, :len(s2s_label_ids)-1] = s2s_label_ids[:-1]
ret_batch = {
'net_input': {
'src_tokens': mlm_source_ids.astype(np.int64),
},
'target': mlm_target_ids.astype(np.int64),
'nsentences': batch_size,
'ntokens': sum([len(x[0]) for x in batch]),
}
return ret_batch
padded_batches = iterators.MapIterator(
batches, collate
)
return padded_batches
def _prepare(self, _random, doc):
nonmasked_tokens, masked_tokens = self._mask_lm(_random, doc)
nonnoise_spans, noise_spans = self._span_corruption(_random, doc)
return nonmasked_tokens, masked_tokens, nonnoise_spans, noise_spans
def _mask_lm(self, _random, doc):
def mask_tokens():
return f"<mask>"
length = len(doc)
mask_tokens_num = int(length * self.args.mask_prob)
mask_tokens_num = min(max(mask_tokens_num, 1), length - 1)
possible_mask_positions = _random.sample(range(length), k=mask_tokens_num)
possible_mask_positions = sorted(possible_mask_positions)
nonmasked_tokens = copy.deepcopy(doc)
masked_tokens = [self.dictionary.pad() for _ in range(len(doc))]
for position in possible_mask_positions:
# masked_tokens.append(nonmasked_tokens[position])
masked_tokens[position] = nonmasked_tokens[position]
nonmasked_tokens[position] = self.dictionary.indices[mask_tokens()]
return nonmasked_tokens, masked_tokens
def _span_corruption(self, _random, doc):
def mask_tokens(i):
return f"<mask_{i}>"
length = len(doc)
noise_tokens_num = int(length * self.args.mask_prob)
noise_tokens_num = min(max(noise_tokens_num, 1), length - 1)
noise_spans_num = int(noise_tokens_num / self.args.span_length)
noise_spans_num = max(noise_spans_num, 1)
nonnoise_tokens_num = length - noise_tokens_num
if noise_spans_num == 1:
noise_split_positions = [0, noise_tokens_num]
else:
possible_split_positions = list(range(1, noise_tokens_num))
_random.shuffle(possible_split_positions)
noise_split_positions = sorted(possible_split_positions[:noise_spans_num-1])
noise_split_positions = [0] + noise_split_positions + [noise_tokens_num]
possible_insert_positions = list(range(nonnoise_tokens_num))
_random.shuffle(possible_insert_positions)
noise_insert_positions = sorted(possible_insert_positions[:noise_spans_num])
nonnoise_spans, noise_spans = [], []
last_end = 0
for i in range(noise_spans_num):
start_pos = noise_insert_positions[i] + noise_split_positions[i]
end_pos = noise_insert_positions[i] + noise_split_positions[i+1]
mask_id = self.dictionary.indices[mask_tokens(i)]
if getattr(self.args, "remove_target_sentinel", False):
noise_spans.append(doc[start_pos:end_pos])
else:
noise_spans.append([mask_id] + doc[start_pos:end_pos])
if getattr(self.args, "remove_source_sentinel", False):
nonnoise_spans.extend(doc[last_end:start_pos])
else:
nonnoise_spans.extend(doc[last_end:start_pos] + [mask_id])
last_end = end_pos
nonnoise_spans.extend(doc[last_end:])
noise_spans = sum(noise_spans, [])
return nonnoise_spans, noise_spans
def _read_from_files(self, source_file, source_lang):
# data = []
file_path = os.path.join(self.data_dir, source_file)
if not os.path.exists(file_path):
print('| file {} not exists'.format(file_path), flush=True)
return iter([]) # skip bad file
with open(file_path, 'r', encoding='utf8') as f:
lines = f.read().strip().split('\n')
doc = [self.dictionary.bos()]
for line in lines:
if line == "":
if self.sample_break_mode == 'complete_doc':
# data.append(doc)
yield doc
doc = [self.dictionary.bos()]
continue
tokenized_line = self.tokenizer.EncodeAsPieces(line)
tokenized_id = [self.dictionary.index(token) for token in tokenized_line] + [self.dictionary.eos_index]
if len(tokenized_id) > self.tokens_per_sample:
continue
if len(doc) + len(tokenized_id) > self.tokens_per_sample:
# data.append(doc)
yield doc
doc = [self.dictionary.bos()]
doc.extend(tokenized_id)
if len(doc) > 1 and len(doc) <= self.tokens_per_sample:
# data.append(doc)
yield doc
# return data