torchscale/tests/test_encoder_decoder.py

47 lines
1.6 KiB
Python
Raw Normal View History

2022-11-23 16:36:55 +00:00
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
2022-11-23 16:21:58 +00:00
import pytest
from torchscale.architecture.config import EncoderDecoderConfig
from torchscale.architecture.encoder_decoder import EncoderDecoder
from torchscale.component.embedding import TextEmbedding, PositionalEmbedding
import torch
testcases = [
{},
{"vocab_size": 64000},
{"activation_fn": "relu"},
{"drop_path_rate": 0.1},
{"encoder_normalize_before": False, "decoder_normalize_before": False},
{"no_scale_embedding": False},
{"layernorm_embedding": True},
{"rel_pos_buckets": 32, "max_rel_pos": 256},
{"deepnorm": True, "subln": False, "encoder_normalize_before": False, "decoder_normalize_before": False},
{"bert_init": True},
{"multiway": True},
{"share_decoder_input_output_embed": True},
{"share_all_embeddings": True},
{"checkpoint_activations": True},
{"fsdp": True}
]
@pytest.mark.parametrize("args", testcases)
def test_decoder(args):
config = EncoderDecoderConfig(**args)
model = EncoderDecoder(
config,
encoder_embed_tokens=TextEmbedding(64000, config.encoder_embed_dim),
decoder_embed_tokens=TextEmbedding(64000, config.decoder_embed_dim),
encoder_embed_positions=PositionalEmbedding(config.max_source_positions, config.encoder_embed_dim),
decoder_embed_positions=PositionalEmbedding(config.max_target_positions, config.decoder_embed_dim),
)
src_tokens = torch.ones(2, 20).long()
prev_output_tokens = torch.ones(2, 10).long()
model(
src_tokens=src_tokens,
prev_output_tokens=prev_output_tokens,
features_only=True,
)