# Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] import json import logging import os from argparse import Namespace # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass, field import sentencepiece as spm from fairseq import utils from fairseq.data import Dictionary from fairseq.dataclass import ChoiceEnum, FairseqDataclass from fairseq.tasks import FairseqTask, register_task from omegaconf import II, MISSING from .data.mlm_loader import MLMLoader logger = logging.getLogger(__name__) SAMPLE_BREAK_MODE_CHOICES = ChoiceEnum(["none", "complete", "complete_doc", "eos"]) SHORTEN_METHOD_CHOICES = ChoiceEnum(["none", "truncate", "random_crop"]) @dataclass class PretrainingConfig(FairseqDataclass): data: str = field( default=MISSING, metadata={ "help": "colon separated path to data directories list, \ will be iterated upon during epochs in round-robin manner" }, ) sample_break_mode: SAMPLE_BREAK_MODE_CHOICES = field( default="complete", metadata={ "help": 'If omitted or "none", fills each sample with tokens-per-sample ' 'tokens. If set to "complete", splits samples only at the end ' "of sentence, but may include multiple sentences per sample. " '"complete_doc" is similar but respects doc boundaries. ' 'If set to "eos", includes only one sentence per sample.' }, ) tokens_per_sample: int = field( default=1024, metadata={"help": "max number of tokens per sample for LM dataset"}, ) mask_prob: float = field( default=0.15, metadata={"help": "probability of replacing a token with mask"}, ) leave_unmasked_prob: float = field( default=0.1, metadata={"help": "probability that a masked token is unmasked"}, ) random_token_prob: float = field( default=0.1, metadata={"help": "probability of replacing a token with a random token"}, ) freq_weighted_replacement: bool = field( default=False, metadata={"help": "sample random replacement words based on word frequencies"}, ) mask_whole_words: bool = field( default=False, metadata={"help": "mask whole words; you may also want to set --bpe"}, ) mask_multiple_length: int = field( default=1, metadata={"help": "repeat the mask indices multiple times"}, ) mask_stdev: float = field( default=0.0, metadata={"help": "stdev of the mask length"}, ) shorten_method: SHORTEN_METHOD_CHOICES = field( default="none", metadata={ "help": "if not none, shorten sequences that exceed --tokens-per-sample" }, ) shorten_data_split_list: str = field( default="", metadata={ "help": "comma-separated list of dataset splits to apply shortening to, " 'e.g., "train,valid" (default: all dataset splits)' }, ) seed: int = II("common.seed") span_length: float = field( default=3.0, metadata={"help": "average span length for masking"}, ) remove_source_sentinel: bool = field( default=False, metadata={"help": "remove the source sentinel for the span corruption task"}, ) remove_target_sentinel: bool = field( default=False, metadata={"help": "remove the target sentinel for the span corruption task"}, ) batch_read_ahead: int = field( default=100000, metadata={"help": "batch read ahead size for infinibatch"}, ) required_batch_size_multiple: int = II("dataset.required_batch_size_multiple") spm_model: str = field( default="", metadata={"help": "sentencepice model to tokenize the data"}, ) dict_file: str = field( default="", metadata={"help": ""}, ) pad_to_max_length: bool = field( default=False, ) @register_task("pretraining", dataclass=PretrainingConfig) class PLMTask(FairseqTask): def __init__(self, cfg, dictionary, tokenizer): super().__init__(cfg) self.cfg = cfg self.dictionary = dictionary self.tokenizer = tokenizer self.seed = cfg.seed self.mask_idx = dictionary.index("") @classmethod def setup_task(cls, cfg, **kwargs): paths = utils.split_paths(cfg.data) assert len(paths) > 0 if cfg.dict_file != "": dictionary = Dictionary.load(cfg.dict_file) else: dictionary = Dictionary.load(os.path.join(paths[0], "dict.txt")) # add mask token dictionary.add_symbol("") for i in range(100): dictionary.add_symbol(f"") dictionary.pad_to_multiple_(cfg.required_batch_size_multiple) logger.info("dictionary: {} types".format(len(dictionary))) # tokenizer = SentencepieceBPE(Namespace(sentencepiece_model=cfg.spm_model)) tokenizer = spm.SentencePieceProcessor() tokenizer.Load(cfg.spm_model) return cls(cfg, dictionary, tokenizer) def load_dataset(self, split, epoch=1, combine=False, **kwargs): self.datasets[split] = { "data": json.load(open(f"{self.cfg.data}/json/{split}.json")), "data_dir": self.cfg.data, "shuffle": True if split == "train" else False, } self.datasets[split] = Namespace(**self.datasets[split]) def dataset(self, split): if split not in self.datasets: raise KeyError("Dataset not loaded: " + split) return self.datasets[split] def get_batch_iterator( self, dataset, max_tokens=None, max_sentences=None, max_positions=None, ignore_invalid_inputs=False, required_batch_size_multiple=1, seed=1, num_shards=1, shard_id=0, num_workers=0, epoch=1, data_buffer_size=0, disable_iterator_cache=False, **kwargs, ): return MLMLoader( self.cfg, dataset, self.dictionary, self.tokenizer, max_tokens=max_tokens, max_sentences=max_sentences, max_positions=max_positions, ignore_invalid_inputs=ignore_invalid_inputs, required_batch_size_multiple=required_batch_size_multiple, seed=seed, num_shards=num_shards, shard_id=shard_id, ) @property def source_dictionary(self): return self.dictionary @property def target_dictionary(self): return self.dictionary