# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from dataclasses import dataclass, field from typing import Optional import torch from fairseq import options, utils from fairseq import distributed_utils from fairseq.dataclass import ChoiceEnum, FairseqDataclass from fairseq.models import ( FairseqIncrementalDecoder, FairseqLanguageModel, register_model, register_model_architecture, ) from fairseq.models.transformer import ( DEFAULT_MIN_PARAMS_TO_WRAP, Embedding, ) from fairseq.modules import PositionalEmbedding from torchscale.architecture.decoder import Decoder from torchscale.architecture.config import DecoderConfig from omegaconf import II DEFAULT_MAX_TARGET_POSITIONS = 1024 import logging logger = logging.getLogger(__name__) @dataclass class LanguageConfig(FairseqDataclass): activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field( default="relu", metadata={"help": "activation function to use"} ) dropout: float = field(default=0.1, metadata={"help": "dropout probability"}) attention_dropout: float = field( default=0.0, metadata={"help": "dropout probability for attention weights"} ) activation_dropout: float = field( default=0.0, metadata={"help": "dropout probability after activation in FFN."} ) relu_dropout: float = field( default=0.0, metadata={"help": "dropout probability after activation in FFN."} ) decoder_embed_dim: int = field( default=512, metadata={"help": "decoder embedding dimension"} ) decoder_output_dim: int = field( default=512, metadata={"help": "decoder output dimension"} ) decoder_input_dim: int = field( default=512, metadata={"help": "decoder input dimension"} ) decoder_ffn_embed_dim: int = field( default=2048, metadata={"help": "decoder embedding dimension for FFN"} ) decoder_layers: int = field(default=6, metadata={"help": "num decoder layers"}) decoder_attention_heads: int = field( default=8, metadata={"help": "num decoder attention heads"} ) decoder_normalize_before: bool = field( default=False, metadata={"help": "apply layernorm before each decoder block"} ) no_token_positional_embeddings: bool = field( default=False, metadata={ "help": "if set, disables positional embeddings (outside self attention)" }, ) share_decoder_input_output_embed: bool = field( default=False, metadata={"help": "share decoder input and output embeddings"} ) decoder_learned_pos: bool = field( default=False, metadata={"help": "use learned positional embeddings in the decoder"}, ) layernorm_embedding: bool = field( default=False, metadata={"help": "add layernorm to embedding"} ) no_scale_embedding: bool = field( default=False, metadata={"help": "if True, dont scale embeddings"} ) checkpoint_activations: bool = field( default=False, metadata={"help": "checkpoint activations at each layer"} ) offload_activations: bool = field( default=False, metadata={"help": "move checkpointed activations to CPU after they are used."}, ) # config for Fully Sharded Data Parallel (FSDP) training min_params_to_wrap: int = field( default=DEFAULT_MIN_PARAMS_TO_WRAP, metadata={ "help": ( "minimum number of params for a layer to be wrapped with FSDP() when " "training with --ddp-backend=fully_sharded. Smaller values will " "improve memory efficiency, but may make torch.distributed " "communication less efficient due to smaller input sizes. This option " "is set to 0 (i.e., always wrap) when --checkpoint-activations or " "--offload-activations are passed." ) } ) moe_freq: int = field( default=0, metadata={ "help": "Frequency at which we insert MoE Transformer layers" }, ) moe_expert_count: int = field( default=0, metadata={ "help": "Number of experts in each MoE Layer" } ) moe_gating_use_fp32: bool = field( default=False, metadata={ "help": "Use FP32 computations in MoE top2 gating function" } ) moe_second_expert_policy: str = field( default='sampling', metadata={ "help": "policy for second expert, options: all/sampling/random" } ) moe_normalize_gate_prob_before_dropping: bool = field( default=False, metadata={ "help": 'whether to normalize gate probs before or after dropping experts for capacity and randomization' } ) moe_expert_ffn_dim: Optional[int] = field( default=None, metadata={ "help": "MoE expert FFN dimension" } ) moe_top1_expert: Optional[bool] = field( default=False, metadata={ "help": "Use top1 gate instead of top2" } ) moe_eval_capacity_token_fraction: Optional[float] = field( default=0.25, metadata={ "help": "Default: 0.25, Fraction of tokens as capacity during validation, if set to negative, use same as training. range: (0.0, 1.0]." } ) moe_normalize_expert_grad: Optional[str] = field( default='world_size', metadata={ "help": "Divide expert gradients by (1) 'world_size' (2) 'sqrt_world_size'" } ) record_a2a_perf_stats: Optional[bool] = field( default=False, metadata={"help": "records all to all perf stats during distributed training"} ) dummy_a2a: Optional[bool] = field( default=False, metadata={"help": "By passes all to all during distributed training by returning the input buffer as output"} ) moe_batch_prioritized_routing: Optional[bool] = field( default=False, metadata={"help": "if true orders token by the gate prob before capacity dropping."} ) use_xmoe: Optional[bool] = field( default=False, ) # options from other parts of the config add_bos_token: bool = II("task.add_bos_token") tokens_per_sample: int = II("task.tokens_per_sample") max_target_positions: Optional[int] = II("task.max_target_positions") tpu: bool = II("common.tpu") memory_efficient_fp16: bool = II("common.memory_efficient_fp16") fp16: bool = II("common.fp16") fp16_no_flatten_grads: bool = II("common.fp16_no_flatten_grads") ddp_backend: str = II("distributed_training.ddp_backend") world_size: int = II("distributed_training.distributed_world_size") distributed_rank: int = II("distributed_training.distributed_rank") ddp_rank: int = II("distributed_training.distributed_rank") deepnorm: Optional[bool] = field( default=False, ) subln: Optional[bool] = field( default=False, ) rel_pos_buckets: Optional[int] = field( default=0, ) max_rel_pos: Optional[int] = field( default=0, ) @register_model("lm", dataclass=LanguageConfig) class LanguageModel(FairseqLanguageModel): def __init__(self, args, decoder): self.args = args super().__init__(decoder) @classmethod def build_model(cls, args, task): if getattr(args, "max_target_positions", None) is None: args.max_target_positions = getattr( args, "tokens_per_sample", DEFAULT_MAX_TARGET_POSITIONS ) embed_tokens = cls.build_embedding( args, task.source_dictionary, args.decoder_embed_dim ) embed_positions = ( PositionalEmbedding( args.max_target_positions, args.decoder_embed_dim, task.dictionary.pad(), learned=args.decoder_learned_pos, ) if not args.no_token_positional_embeddings else None ) if args.share_decoder_input_output_embed: output_projection = torch.nn.Linear( embed_tokens.weight.shape[1], embed_tokens.weight.shape[0], bias=False, ) output_projection.weight = embed_tokens.weight else: output_projection = torch.nn.Linear( decoder_embed_dim, len(task.dictionary), bias=False ) torch.nn.init.normal_( output_projection.weight, mean=0, std=decoder_embed_dim ** -0.5 ) if ( getattr(args, 'moe_freq', 0) > 0 and ( getattr(args, 'fp16', False) and not getattr(args, 'memory_efficient_fp16', False) and getattr(args, 'ddp_backend', None) != "fully_sharded" ) ): assert args.fp16_no_flatten_grads, "If training moe models, set --fp16-no-flatten-grads to calculate correct gradnorm" args.ddp_rank = distributed_utils.get_data_parallel_rank() config = DecoderConfig() config.override(args) decoder = LMDecoder( config, embed_tokens, embed_positions, output_projection, is_encoder_decoder=False, dictionary=task.dictionary, ) return cls(args, decoder) @classmethod def build_embedding(cls, args, dictionary, embed_dim, path=None): return Embedding(len(dictionary), embed_dim, dictionary.pad()) class LMDecoder(Decoder, FairseqIncrementalDecoder): def forward(self, src_tokens, **kwargs): self_attn_padding_mask = src_tokens.eq(self.dictionary.pad()) return super().forward(src_tokens, self_attn_padding_mask, **kwargs) def max_positions(self): return self.embed_positions.max_positions def reorder_incremental_state_scripting( self, incremental_state, new_order, ): for module in incremental_state: for key in incremental_state[module]: result = incremental_state[module][key].index_select(0, new_order) incremental_state[module][key] = result @register_model_architecture("lm", "lm_base") def base_lm_architecture(args): # backward compatibility for older model checkpoints if hasattr(args, "no_tie_adaptive_proj"): # previous models defined --no-tie-adaptive-proj, so use the existence of # that option to determine if this is an "old" model checkpoint args.no_decoder_final_norm = True # old models always set this to True if args.no_tie_adaptive_proj is False: args.tie_adaptive_proj = True if hasattr(args, "decoder_final_norm"): args.no_decoder_final_norm = not args.decoder_final_norm args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 2048) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.adaptive_softmax_factor = getattr(args, "adaptive_softmax_factor", 4) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.activation_fn = getattr(args, "activation_fn", "relu") args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0) args.decoder_layers_to_keep = getattr(args, "decoder_layers_to_keep", None) args.base_layers = getattr(args, "base_layers", 0) args.base_sublayers = getattr(args, "base_sublayers", 1) args.base_shuffle = getattr(args, "base_shuffle", False) args.add_bos_token = getattr(args, "add_bos_token", False) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.character_embeddings = getattr(args, "character_embeddings", False) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) # Model training is not stable without this args.decoder_normalize_before = True args.no_decoder_final_norm = getattr(args, "no_decoder_final_norm", False) args.adaptive_input = getattr(args, "adaptive_input", False) args.adaptive_input_factor = getattr(args, "adaptive_input_factor", 4) args.adaptive_input_cutoff = getattr(args, "adaptive_input_cutoff", None) args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", False) args.tie_adaptive_proj = getattr(args, "tie_adaptive_proj", False) args.no_scale_embedding = getattr(args, "no_scale_embedding", False) args.layernorm_embedding = getattr(args, "layernorm_embedding", False) args.checkpoint_activations = getattr(args, "checkpoint_activations", False) args.offload_activations = getattr(args, "offload_activations", False) if args.offload_activations: args.checkpoint_activations = True