37 lines
1.1 KiB
Python
37 lines
1.1 KiB
Python
# Copyright (c) 2022 Microsoft
|
|
# Licensed under The MIT License [see LICENSE for details]
|
|
|
|
import pytest
|
|
from torchscale.architecture.config import DecoderConfig
|
|
from torchscale.architecture.decoder import Decoder
|
|
import torch
|
|
|
|
testcases = [
|
|
{},
|
|
{"vocab_size": 64000},
|
|
{"activation_fn": "relu"},
|
|
{"drop_path_rate": 0.1},
|
|
{"decoder_normalize_before": False},
|
|
{"no_scale_embedding": False},
|
|
{"layernorm_embedding": True},
|
|
{"rel_pos_buckets": 32, "max_rel_pos": 256},
|
|
{"deepnorm": True, "subln": False, "decoder_normalize_before": False},
|
|
{"bert_init": True},
|
|
{"multiway": True},
|
|
{"share_decoder_input_output_embed": True},
|
|
{"checkpoint_activations": True},
|
|
{"fsdp": True}
|
|
]
|
|
|
|
@pytest.mark.parametrize("args", testcases)
|
|
def test_decoder(args):
|
|
config = DecoderConfig(**args)
|
|
model = Decoder(config)
|
|
prev_output_tokens = torch.ones(2, 10)
|
|
token_embeddings = torch.rand(2, 10, config.decoder_embed_dim)
|
|
model(
|
|
prev_output_tokens=prev_output_tokens,
|
|
token_embeddings=token_embeddings,
|
|
features_only=True,
|
|
)
|