366 lines
13 KiB
Python
366 lines
13 KiB
Python
# Copyright (c) 2022 Microsoft
|
|
# Licensed under The MIT License [see LICENSE for details]
|
|
|
|
# Copyright (c) Facebook, Inc. and its affiliates.
|
|
#
|
|
# This source code is licensed under the MIT license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
import logging
|
|
from dataclasses import dataclass, field
|
|
from typing import Optional
|
|
import torch
|
|
|
|
from fairseq import utils
|
|
from fairseq import distributed_utils
|
|
from fairseq.dataclass import ChoiceEnum, FairseqDataclass
|
|
from fairseq.models import (
|
|
FairseqIncrementalDecoder,
|
|
FairseqLanguageModel,
|
|
register_model,
|
|
register_model_architecture,
|
|
)
|
|
from fairseq.models.transformer import (
|
|
DEFAULT_MIN_PARAMS_TO_WRAP, Embedding,
|
|
)
|
|
from fairseq.modules import PositionalEmbedding
|
|
from torchscale.architecture.decoder import Decoder
|
|
from torchscale.architecture.config import DecoderConfig
|
|
from omegaconf import II
|
|
|
|
DEFAULT_MAX_TARGET_POSITIONS = 1024
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
@dataclass
|
|
class LanguageConfig(FairseqDataclass):
|
|
activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field(
|
|
default="relu", metadata={"help": "activation function to use"}
|
|
)
|
|
dropout: float = field(default=0.1, metadata={"help": "dropout probability"})
|
|
attention_dropout: float = field(
|
|
default=0.0, metadata={"help": "dropout probability for attention weights"}
|
|
)
|
|
activation_dropout: float = field(
|
|
default=0.0, metadata={"help": "dropout probability after activation in FFN."}
|
|
)
|
|
relu_dropout: float = field(
|
|
default=0.0, metadata={"help": "dropout probability after activation in FFN."}
|
|
)
|
|
decoder_embed_dim: int = field(
|
|
default=512, metadata={"help": "decoder embedding dimension"}
|
|
)
|
|
decoder_output_dim: int = field(
|
|
default=512, metadata={"help": "decoder output dimension"}
|
|
)
|
|
decoder_input_dim: int = field(
|
|
default=512, metadata={"help": "decoder input dimension"}
|
|
)
|
|
decoder_ffn_embed_dim: int = field(
|
|
default=2048, metadata={"help": "decoder embedding dimension for FFN"}
|
|
)
|
|
decoder_layers: int = field(default=6, metadata={"help": "num decoder layers"})
|
|
decoder_attention_heads: int = field(
|
|
default=8, metadata={"help": "num decoder attention heads"}
|
|
)
|
|
decoder_normalize_before: bool = field(
|
|
default=False, metadata={"help": "apply layernorm before each decoder block"}
|
|
)
|
|
no_token_positional_embeddings: bool = field(
|
|
default=False,
|
|
metadata={
|
|
"help": "if set, disables positional embeddings (outside self attention)"
|
|
},
|
|
)
|
|
share_decoder_input_output_embed: bool = field(
|
|
default=False, metadata={"help": "share decoder input and output embeddings"}
|
|
)
|
|
decoder_learned_pos: bool = field(
|
|
default=False,
|
|
metadata={"help": "use learned positional embeddings in the decoder"},
|
|
)
|
|
layernorm_embedding: bool = field(
|
|
default=False, metadata={"help": "add layernorm to embedding"}
|
|
)
|
|
no_scale_embedding: bool = field(
|
|
default=False, metadata={"help": "if True, dont scale embeddings"}
|
|
)
|
|
checkpoint_activations: bool = field(
|
|
default=False, metadata={"help": "checkpoint activations at each layer"}
|
|
)
|
|
offload_activations: bool = field(
|
|
default=False,
|
|
metadata={"help": "move checkpointed activations to CPU after they are used."},
|
|
)
|
|
# config for Fully Sharded Data Parallel (FSDP) training
|
|
min_params_to_wrap: int = field(
|
|
default=DEFAULT_MIN_PARAMS_TO_WRAP,
|
|
metadata={
|
|
"help": (
|
|
"minimum number of params for a layer to be wrapped with FSDP() when "
|
|
"training with --ddp-backend=fully_sharded. Smaller values will "
|
|
"improve memory efficiency, but may make torch.distributed "
|
|
"communication less efficient due to smaller input sizes. This option "
|
|
"is set to 0 (i.e., always wrap) when --checkpoint-activations or "
|
|
"--offload-activations are passed."
|
|
)
|
|
}
|
|
)
|
|
moe_freq: int = field(
|
|
default=0,
|
|
metadata={
|
|
"help": "Frequency at which we insert MoE Transformer layers"
|
|
},
|
|
)
|
|
moe_expert_count: int = field(
|
|
default=0,
|
|
metadata={
|
|
"help": "Number of experts in each MoE Layer"
|
|
}
|
|
)
|
|
moe_gating_use_fp32: bool = field(
|
|
default=False,
|
|
metadata={
|
|
"help": "Use FP32 computations in MoE top2 gating function"
|
|
}
|
|
)
|
|
moe_second_expert_policy: str = field(
|
|
default='sampling',
|
|
metadata={
|
|
"help": "policy for second expert, options: all/sampling/random"
|
|
}
|
|
)
|
|
moe_normalize_gate_prob_before_dropping: bool = field(
|
|
default=False,
|
|
metadata={
|
|
"help": 'whether to normalize gate probs before or after dropping experts for capacity and randomization'
|
|
}
|
|
)
|
|
moe_expert_ffn_dim: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "MoE expert FFN dimension"
|
|
}
|
|
)
|
|
moe_top1_expert: Optional[bool] = field(
|
|
default=False,
|
|
metadata={
|
|
"help": "Use top1 gate instead of top2"
|
|
}
|
|
)
|
|
moe_eval_capacity_token_fraction: Optional[float] = field(
|
|
default=0.25,
|
|
metadata={
|
|
"help": (
|
|
"Default: 0.25, Fraction of tokens as capacity during validation, "
|
|
"if set to negative, use same as training. range: (0.0, 1.0]."
|
|
)
|
|
}
|
|
)
|
|
moe_normalize_expert_grad: Optional[str] = field(
|
|
default='world_size',
|
|
metadata={
|
|
"help": "Divide expert gradients by (1) 'world_size' (2) 'sqrt_world_size'"
|
|
}
|
|
)
|
|
record_a2a_perf_stats: Optional[bool] = field(
|
|
default=False, metadata={"help": "records all to all perf stats during distributed training"}
|
|
)
|
|
dummy_a2a: Optional[bool] = field(
|
|
default=False, metadata={
|
|
"help": "By passes all to all during distributed training by returning the input buffer as output"}
|
|
)
|
|
moe_batch_prioritized_routing: Optional[bool] = field(
|
|
default=False, metadata={"help": "if true orders token by the gate prob before capacity dropping."}
|
|
)
|
|
use_xmoe: Optional[bool] = field(
|
|
default=False,
|
|
)
|
|
|
|
# options from other parts of the config
|
|
add_bos_token: bool = II("task.add_bos_token")
|
|
tokens_per_sample: int = II("task.tokens_per_sample")
|
|
max_target_positions: Optional[int] = II("task.max_target_positions")
|
|
tpu: bool = II("common.tpu")
|
|
memory_efficient_fp16: bool = II("common.memory_efficient_fp16")
|
|
fp16: bool = II("common.fp16")
|
|
fp16_no_flatten_grads: bool = II("common.fp16_no_flatten_grads")
|
|
ddp_backend: str = II("distributed_training.ddp_backend")
|
|
world_size: int = II("distributed_training.distributed_world_size")
|
|
distributed_rank: int = II("distributed_training.distributed_rank")
|
|
ddp_rank: int = II("distributed_training.distributed_rank")
|
|
deepnorm: Optional[bool] = field(
|
|
default=False,
|
|
)
|
|
subln: Optional[bool] = field(
|
|
default=False,
|
|
)
|
|
rel_pos_buckets: Optional[int] = field(
|
|
default=0,
|
|
)
|
|
max_rel_pos: Optional[int] = field(
|
|
default=0,
|
|
)
|
|
|
|
|
|
@register_model("lm", dataclass=LanguageConfig)
|
|
class LanguageModel(FairseqLanguageModel):
|
|
|
|
def __init__(self, args, decoder):
|
|
self.args = args
|
|
super().__init__(decoder)
|
|
|
|
@classmethod
|
|
def build_model(cls, args, task):
|
|
|
|
if getattr(args, "max_target_positions", None) is None:
|
|
args.max_target_positions = getattr(
|
|
args, "tokens_per_sample", DEFAULT_MAX_TARGET_POSITIONS
|
|
)
|
|
|
|
embed_tokens = cls.build_embedding(
|
|
args, task.source_dictionary, args.decoder_embed_dim
|
|
)
|
|
|
|
embed_positions = (
|
|
PositionalEmbedding(
|
|
args.max_target_positions,
|
|
args.decoder_embed_dim,
|
|
task.dictionary.pad(),
|
|
learned=args.decoder_learned_pos,
|
|
)
|
|
if not args.no_token_positional_embeddings
|
|
else None
|
|
)
|
|
|
|
if args.share_decoder_input_output_embed:
|
|
output_projection = torch.nn.Linear(
|
|
embed_tokens.weight.shape[1],
|
|
embed_tokens.weight.shape[0],
|
|
bias=False,
|
|
)
|
|
output_projection.weight = embed_tokens.weight
|
|
else:
|
|
output_projection = torch.nn.Linear(
|
|
args.decoder_embed_dim, len(task.dictionary), bias=False
|
|
)
|
|
torch.nn.init.normal_(
|
|
output_projection.weight, mean=0, std=args.decoder_embed_dim ** -0.5
|
|
)
|
|
|
|
if (
|
|
getattr(args, 'moe_freq', 0) > 0
|
|
and (
|
|
getattr(args, 'fp16', False)
|
|
and not getattr(args, 'memory_efficient_fp16', False)
|
|
and getattr(args, 'ddp_backend', None) != "fully_sharded"
|
|
)
|
|
):
|
|
assert args.fp16_no_flatten_grads, \
|
|
"If training moe models, set --fp16-no-flatten-grads to calculate correct gradnorm"
|
|
|
|
args.ddp_rank = distributed_utils.get_data_parallel_rank()
|
|
|
|
config = DecoderConfig()
|
|
config.override(args)
|
|
|
|
decoder = LMDecoder(
|
|
config,
|
|
embed_tokens,
|
|
embed_positions,
|
|
output_projection,
|
|
is_encoder_decoder=False,
|
|
dictionary=task.dictionary,
|
|
)
|
|
|
|
return cls(args, decoder)
|
|
|
|
@classmethod
|
|
def build_embedding(cls, args, dictionary, embed_dim, path=None):
|
|
return Embedding(len(dictionary), embed_dim, dictionary.pad())
|
|
|
|
|
|
class LMDecoder(Decoder, FairseqIncrementalDecoder):
|
|
|
|
def forward(self, src_tokens, **kwargs):
|
|
self_attn_padding_mask = src_tokens.eq(self.dictionary.pad())
|
|
return super().forward(src_tokens, self_attn_padding_mask, **kwargs)
|
|
|
|
def max_positions(self):
|
|
return self.embed_positions.max_positions
|
|
|
|
def reorder_incremental_state_scripting(
|
|
self,
|
|
incremental_state,
|
|
new_order,
|
|
):
|
|
for module in incremental_state:
|
|
for key in incremental_state[module]:
|
|
result = incremental_state[module][key].index_select(0, new_order)
|
|
incremental_state[module][key] = result
|
|
|
|
|
|
@register_model_architecture("lm", "lm_base")
|
|
def base_lm_architecture(args):
|
|
# backward compatibility for older model checkpoints
|
|
if hasattr(args, "no_tie_adaptive_proj"):
|
|
# previous models defined --no-tie-adaptive-proj, so use the existence of
|
|
# that option to determine if this is an "old" model checkpoint
|
|
args.no_decoder_final_norm = True # old models always set this to True
|
|
if args.no_tie_adaptive_proj is False:
|
|
args.tie_adaptive_proj = True
|
|
if hasattr(args, "decoder_final_norm"):
|
|
args.no_decoder_final_norm = not args.decoder_final_norm
|
|
|
|
args.dropout = getattr(args, "dropout", 0.1)
|
|
args.attention_dropout = getattr(args, "attention_dropout", 0.0)
|
|
|
|
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512)
|
|
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 2048)
|
|
args.decoder_layers = getattr(args, "decoder_layers", 6)
|
|
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8)
|
|
args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
|
|
args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
|
|
args.adaptive_softmax_factor = getattr(args, "adaptive_softmax_factor", 4)
|
|
args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False)
|
|
args.activation_fn = getattr(args, "activation_fn", "relu")
|
|
|
|
args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0)
|
|
args.decoder_layers_to_keep = getattr(args, "decoder_layers_to_keep", None)
|
|
|
|
args.base_layers = getattr(args, "base_layers", 0)
|
|
args.base_sublayers = getattr(args, "base_sublayers", 1)
|
|
args.base_shuffle = getattr(args, "base_shuffle", False)
|
|
|
|
args.add_bos_token = getattr(args, "add_bos_token", False)
|
|
args.no_token_positional_embeddings = getattr(
|
|
args, "no_token_positional_embeddings", False
|
|
)
|
|
args.share_decoder_input_output_embed = getattr(
|
|
args, "share_decoder_input_output_embed", False
|
|
)
|
|
args.character_embeddings = getattr(args, "character_embeddings", False)
|
|
|
|
args.decoder_output_dim = getattr(
|
|
args, "decoder_output_dim", args.decoder_embed_dim
|
|
)
|
|
args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)
|
|
|
|
# Model training is not stable without this
|
|
args.decoder_normalize_before = True
|
|
args.no_decoder_final_norm = getattr(args, "no_decoder_final_norm", False)
|
|
|
|
args.adaptive_input = getattr(args, "adaptive_input", False)
|
|
args.adaptive_input_factor = getattr(args, "adaptive_input_factor", 4)
|
|
args.adaptive_input_cutoff = getattr(args, "adaptive_input_cutoff", None)
|
|
|
|
args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", False)
|
|
args.tie_adaptive_proj = getattr(args, "tie_adaptive_proj", False)
|
|
|
|
args.no_scale_embedding = getattr(args, "no_scale_embedding", False)
|
|
args.layernorm_embedding = getattr(args, "layernorm_embedding", False)
|
|
args.checkpoint_activations = getattr(args, "checkpoint_activations", False)
|
|
args.offload_activations = getattr(args, "offload_activations", False)
|
|
if args.offload_activations:
|
|
args.checkpoint_activations = True
|