torchscale/torchscale/component/xmoe/routing.py
2022-11-26 08:10:15 -08:00

464 lines
18 KiB
Python

# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
# Implementation of Top2Gating described in https://arxiv.org/pdf/2006.16668.pdf
# Code is inspired by Top2GatingOnLogits from lingvo:
# https://github.com/tensorflow/lingvo/blob/21b8106c5f1d30a196c98eedc441d4fd70833b11/lingvo/core/moe_layers.py#L477
# NOTE: This is a mirror of the code in
# https://github.com/facebookresearch/fairscale/tree/master/fairscale/nn/moe
from typing import Callable, Dict, Tuple, Optional
import math
import torch
from torch import Tensor
import torch.nn.functional as F
from .moe_layer import has_tutel, fused_cumsum_sub_one
# use a fixed temperature to compute balance loss
TEMPERATURE_FOR_L_UAX = 0.07
# maximum capacity of 1 expert as a fraction of number of tokens in the batch
# Note: setting this to 1.0 causes inference to significantly slow down
EVAL_CAPACITY_TOKEN_FRACTION = 0.25
# logging
SAMPLE_FRACTION = 0.2
def top1gating(
logits: torch.Tensor,
input_mask: Optional[torch.Tensor] = None,
use_fp32=False,
capacity_factor=1.0,
eval_mode=False,
moe_eval_capacity_token_fraction=EVAL_CAPACITY_TOKEN_FRACTION,
use_xmoe=False,
gate_obj=None,
) -> Tuple[Tensor, Tensor, Tensor, Dict]:
"""Implements Top2Gating on logits."""
metadata = {}
if use_fp32:
orig_dtype = logits.dtype
logits = logits.float()
gates = F.softmax(logits, dim=1)
metadata["entropy_gating"] = entropy(probs=gates).mean().detach()
# gates has shape of SE
num_tokens = gates.shape[0]
num_experts = gates.shape[1]
if moe_eval_capacity_token_fraction > 0.0 and eval_mode:
capacity = math.ceil(moe_eval_capacity_token_fraction * num_tokens)
else:
# capacity = capacity_factor * S/E
capacity = int(capacity_factor * math.ceil(num_tokens / num_experts))
# Create a mask for 1st's expert per token
indices1_s = torch.argmax(gates, dim=1)
mask1 = one_hot(indices1_s, num_classes=num_experts, unsqueeze_indices=True)
if input_mask is not None and input_mask.any():
nonpadding = ~ input_mask
mask1 = mask1 * nonpadding.unsqueeze(-1).to(mask1.dtype)
# for logging (percent of tokens routed to each expert)
expert1_hist = 100 * torch.histc((indices1_s.squeeze() + 1), bins=num_experts, min=1, max=num_experts) / num_tokens
metadata["unused_expert1_count"] = (expert1_hist == 0).sum()
expert1_hist = torch.sort(expert1_hist, dim=0, descending=True).values + torch.finfo(torch.float32).tiny
sample_count = max(math.ceil(num_experts * SAMPLE_FRACTION), 1)
metadata["expert1_balance_top"] = expert1_hist[:sample_count].sum()
metadata["expert1_balance_bottom"] = expert1_hist[-sample_count:].sum()
gates1_s = (gates * mask1).sum(dim=1)
# Compute locations in capacity buffer
locations1 = fused_cumsum_sub_one(mask1)
# Compute l_aux
me = torch.mean(gates, dim=0)
ce = torch.mean(mask1.to(gates.dtype), dim=0)
l_aux = torch.mean(me * ce)
l_aux = l_aux * num_experts * num_experts
if has_tutel:
locations1_s = torch.sum(locations1 * mask1, dim=1)
return l_aux, metadata, capacity, num_experts, [indices1_s, ], [locations1_s, ], [gates1_s, ]
# Remove locations outside capacity from mask
mask1 = mask1 * torch.lt(locations1, capacity)
# Store the capacity location for each token
locations1_s = torch.sum(locations1 * mask1, dim=1)
# Calculate combine_weights and dispatch_mask
gates1 = gates1_s.unsqueeze(-1) * mask1.to(gates1_s.dtype) # einsum("s,se->se")
# locations1_sc = num_tokens * capacity
locations1_sc = one_hot(locations1_s, num_classes=capacity, unsqueeze_indices=True)
combine1_sec = torch.bmm(
# einsum("se,sc->sec")
gates1.unsqueeze(-1), locations1_sc.to(gates1.dtype).unsqueeze(1)
)
dispatch_mask = combine1_sec.bool()
if use_fp32:
return l_aux, combine1_sec.to(orig_dtype), dispatch_mask, metadata
else:
return l_aux, combine1_sec, dispatch_mask, metadata
class Top1Gate(torch.nn.Module):
"""Gate module which implements Top2Gating as described in Gshard_.
::
gate = Top2Gate(model_dim, num_experts)
l_aux, combine_weights, dispatch_mask = gate(input)
.. Gshard_: https://arxiv.org/pdf/2006.16668.pdf
Args:
model_dim (int):
size of model embedding dimension
num_experts (ints):
number of experts in model
"""
wg: torch.nn.Linear
def __init__(
self,
model_dim: int,
num_experts: int,
use_fp32=False,
input_noise_type=None,
capacity_factor=1.0,
moe_eval_capacity_token_fraction=EVAL_CAPACITY_TOKEN_FRACTION,
use_xmoe=False,
) -> None:
# TODO: merge this to top2gate.py
#
super().__init__()
if not use_xmoe:
self.wg = torch.nn.Linear(model_dim, num_experts, bias=False)
else:
self.wg_reduction = torch.nn.Linear(model_dim, 16, bias=False)
wg = torch.empty(num_experts, 16)
torch.nn.init.orthogonal_(wg, gain=0.32)
self.register_parameter("wg", torch.nn.Parameter(wg))
self.use_xmoe = use_xmoe
self.use_fp32 = use_fp32
self.input_noise_type = input_noise_type
self.capacity_factor = capacity_factor
self.moe_eval_capacity_token_fraction = moe_eval_capacity_token_fraction
def forward(self, input, mask=None): # type: ignore
if self.use_xmoe:
input = self.wg_reduction(input)
with torch.no_grad():
wg_norm = self.wg.norm(p=2.0, dim=1, keepdim=True)
self.wg.mul_(1.5 / wg_norm)
logits = self._cosine(input, self.wg)
logits = self._make_finite(logits)
else:
logits = self.wg(input)
return top1gating(
logits,
mask,
use_fp32=self.use_fp32,
capacity_factor=self.capacity_factor,
eval_mode=not self.training,
moe_eval_capacity_token_fraction=self.moe_eval_capacity_token_fraction,
use_xmoe=self.use_xmoe,
gate_obj=self,
)
def _make_finite(self, scores):
ok = scores.isfinite()
if not ok.all():
# NaNs here can break the assignment algorithm
scores[~ok] = scores[ok].min()
return scores
def _get_gating_temperature(self, eps=1e-4):
if self.gating_t.data.item() < eps:
return eps
return self.gating_t
def _cosine(self, mat1, mat2, eps=1e-4):
assert mat1.dim() == 2
assert mat2.dim() == 2
# mat1 = F.normalize(mat1, p=2.0, dim=1, eps=eps)
mat2 = F.normalize(mat2.float(), p=2.0, dim=1, eps=eps)
return mat1.float().matmul(mat2.transpose(0, 1)).type_as(mat1)
gumbel_map: Dict[torch.device, Callable] = {}
def gumbel_rsample(shape: Tuple, device: torch.device) -> Tensor:
gumbel = gumbel_map.get(device)
if gumbel is None:
one = torch.tensor(1.0, device=device)
zero = torch.tensor(0.0, device=device)
gumbel = torch.distributions.gumbel.Gumbel(zero, one).rsample # type: ignore
gumbel_map[device] = gumbel
return gumbel(shape)
def one_hot(indices: torch.Tensor, num_classes: int, unsqueeze_indices=False) -> Tensor:
if unsqueeze_indices:
indices = indices.unsqueeze(-1)
assert indices.shape[-1] == 1, "last dimension of indices must be have size 1"
output = torch.zeros(indices.shape[:-1] + (num_classes,), device=indices.device, dtype=indices.dtype)
output.scatter_(
len(output.shape) - 1, indices, 1
)
return output
def entropy(probs):
logits = torch.distributions.utils.probs_to_logits(probs)
p_log_p = probs * logits
return -p_log_p.sum(-1)
def top2gating(
logits: torch.Tensor,
input_mask: Optional[torch.Tensor] = None,
use_fp32=False,
second_expert_policy='sampling',
normalize_gate_prob_before_dropping=False,
eval_mode=False,
moe_eval_capacity_token_fraction=0.25,
batch_prioritized_routing=False,
) -> Tuple[Tensor, Tensor, Tensor]:
"""Implements Top2Gating on logits."""
metadata = {}
if use_fp32:
orig_dtype = logits.dtype
logits = logits.float()
gates = F.softmax(logits, dim=1)
metadata["entropy_gating"] = entropy(probs=gates).mean().detach()
# gates has shape of SE
num_tokens = gates.shape[0]
num_experts = gates.shape[1]
if moe_eval_capacity_token_fraction > 0.0 and eval_mode:
capacity = math.ceil(moe_eval_capacity_token_fraction * num_tokens)
else:
# capacity = 2S/E
capacity = 2 * math.ceil(num_tokens / num_experts)
# Create a mask for 1st's expert per token
indices1_s = torch.argmax(gates, dim=1, keepdim=True)
mask1 = one_hot(indices1_s, num_experts)
if second_expert_policy == 'sampling':
# Create a mask for 2nd's expert per token using Gumbel-max trick
# https://timvieira.github.io/blog/post/2014/07/31/gumbel-max-trick/
logits_w_noise = logits + gumbel_rsample(logits.shape, device=logits.device)
else:
logits_w_noise = logits
# Replace top-expert with min value
logits_except1 = logits_w_noise.masked_fill(mask1.bool(), float("-inf"))
indices2_s = torch.argmax(logits_except1, dim=1, keepdim=True)
mask2 = one_hot(indices2_s, num_experts)
gates1_s = (gates * mask1).sum(dim=1)
gates2_s = (gates * mask2).sum(dim=1)
if normalize_gate_prob_before_dropping:
# Normalize gate probabilities
denom_s = gates1_s + gates2_s
# Avoid divide-by-zero
denom_s = torch.clamp(denom_s, min=torch.finfo(denom_s.dtype).eps)
gates1_s = gates1_s / denom_s
gates2_s = gates2_s / denom_s
if second_expert_policy == 'random':
sampled = (2 * gates2_s) > torch.rand_like(gates2_s)
mask2 = mask2 * sampled.repeat(num_experts, 1).transpose(1, 0)
# Compute locations in capacity buffer
if input_mask is not None and input_mask.any():
nonpadding = ~ input_mask
mask1 = mask1 * nonpadding.unsqueeze(-1).to(mask1.dtype)
mask2 = mask2 * nonpadding.unsqueeze(-1).to(mask1.dtype)
if batch_prioritized_routing:
# if batch_prioritized_routing:
importance_scores = -1 * gates.max(dim=1)[0]
sorted_mask1 = mask1[importance_scores.argsort(dim=0)]
sorted_cumsum1 = fused_cumsum_sub_one(sorted_mask1) * sorted_mask1
importance_sorted_locations1 = sorted_cumsum1[importance_scores.argsort(dim=0).argsort(dim=0)]
sorted_mask2 = mask2[importance_scores.argsort(dim=0)]
sorted_cumsum2 = fused_cumsum_sub_one(sorted_mask2) * sorted_mask2
importance_sorted_locations2 = sorted_cumsum2[importance_scores.argsort(dim=0).argsort(dim=0)]
importance_sorted_locations2 += torch.sum(mask1, dim=0, keepdim=True)
locations1, locations2 = importance_sorted_locations1, importance_sorted_locations2
else:
locations1 = fused_cumsum_sub_one(mask1)
locations2 = fused_cumsum_sub_one(mask2)
# Update 2nd's location by accounting for locations of 1st
locations2 += torch.sum(mask1, dim=0, keepdim=True)
# Compute l_aux
me = torch.mean(gates, dim=0)
ce = torch.mean(mask1.to(gates.dtype), dim=0)
l_aux = torch.mean(me * ce)
l_aux = l_aux * num_experts * num_experts
# for logging purposes
metadata["overflow_expert1"] = 100 * torch.sum(mask1 * torch.ge(locations1, capacity)) / torch.sum(mask1)
metadata["overflow_expert2"] = 100 * torch.sum(mask2 * torch.ge(locations2, capacity)) / torch.sum(mask2)
# Remove locations outside capacity from mask
mask1_, mask2_ = mask1, mask2
mask1 = mask1 * torch.lt(locations1, capacity)
mask2 = mask2 * torch.lt(locations2, capacity)
# for logging (percent of tokens routed to each expert)
expert1_hist = 100 * torch.histc((indices1_s.squeeze() + 1), bins=num_experts, min=1, max=num_experts) / num_tokens
metadata["unused_expert1_count"] = (expert1_hist == 0).sum()
expert1_hist = torch.sort(expert1_hist, dim=0, descending=True).values + torch.finfo(torch.float32).tiny
expert2_hist = 100 * torch.histc((indices2_s.squeeze() + 1), bins=num_experts, min=1, max=num_experts) / num_tokens
metadata["unused_expert2_count"] = (expert2_hist == 0).sum()
expert2_hist = torch.sort(expert2_hist, dim=0, descending=True).values + torch.finfo(torch.float32).tiny
sample_count = max(math.ceil(num_experts * SAMPLE_FRACTION), 1)
metadata["expert1_balance_top"] = expert1_hist[:sample_count].sum()
metadata["expert1_balance_bottom"] = expert1_hist[-sample_count:].sum()
metadata["expert2_balance_top"] = expert2_hist[:sample_count].sum()
metadata["expert2_balance_bottom"] = expert2_hist[-sample_count:].sum()
if not normalize_gate_prob_before_dropping:
# Normalize gate probabilities
gates1_s = (gates * mask1).sum(dim=1)
gates2_s = (gates * mask2).sum(dim=1)
denom_s = gates1_s + gates2_s
# Avoid divide-by-zero
denom_s = torch.clamp(denom_s, min=torch.finfo(denom_s.dtype).eps)
gates1_s /= denom_s
gates2_s /= denom_s
if has_tutel:
locations1_s = torch.sum(locations1 * mask1_, dim=1)
locations2_s = torch.sum(locations2 * mask2_, dim=1)
return l_aux, metadata, capacity, num_experts, \
[indices1_s, indices2_s], [locations1_s, locations2_s], [gates1_s, gates2_s]
# Store the capacity location for each token
locations1_s = torch.sum(locations1 * mask1, dim=1)
locations2_s = torch.sum(locations2 * mask2, dim=1)
# Calculate combine_weights and dispatch_mask
gates1 = gates1_s.unsqueeze(-1) * mask1.to(gates1_s.dtype) # einsum("s,se->se")
gates2 = gates2_s.unsqueeze(-1) * mask2.to(gates2_s.dtype) # einsum("s,se->se")
locations1_sc = one_hot(locations1_s, num_classes=capacity, unsqueeze_indices=True)
locations2_sc = one_hot(locations2_s, num_classes=capacity, unsqueeze_indices=True)
combine1_sec = torch.bmm(
# einsum("se,sc->sec")
gates1.unsqueeze(-1), locations1_sc.to(gates1.dtype).unsqueeze(1)
)
combine2_sec = torch.bmm(
# einsum("se,sc->sec")
gates2.unsqueeze(-1), locations2_sc.to(gates2.dtype).unsqueeze(1)
)
combine_weights = combine1_sec + combine2_sec
dispatch_mask = combine_weights.bool()
if use_fp32:
return l_aux, combine_weights.to(orig_dtype), dispatch_mask, metadata
else:
return l_aux, combine_weights, dispatch_mask, metadata
class Top2Gate(torch.nn.Module):
"""Gate module which implements Top2Gating as described in Gshard_.
::
gate = Top2Gate(model_dim, num_experts)
l_aux, combine_weights, dispatch_mask = gate(input)
.. Gshard_: https://arxiv.org/pdf/2006.16668.pdf
Args:
model_dim (int):
size of model embedding dimension
num_experts (ints):
number of experts in model
"""
wg: torch.nn.Linear
def __init__(
self,
model_dim: int,
num_experts: int,
use_fp32=False,
second_expert_policy='sampling',
normalize_gate_prob_before_dropping=False,
moe_eval_capacity_token_fraction=0.25,
batch_prioritized_routing=False,
use_xmoe=False,
) -> None:
super().__init__()
if not use_xmoe:
self.wg = torch.nn.Linear(model_dim, num_experts, bias=False)
else:
self.wg_reduction = torch.nn.Linear(model_dim, 16, bias=False)
wg = torch.empty(num_experts, 16)
torch.nn.init.orthogonal_(wg, gain=0.32)
self.register_parameter("wg", torch.nn.Parameter(wg))
self.use_fp32 = use_fp32
self.second_expert_policy = second_expert_policy
self.normalize_gate_prob_before_dropping = normalize_gate_prob_before_dropping
self.moe_eval_capacity_token_fraction = moe_eval_capacity_token_fraction
self.batch_prioritized_routing = batch_prioritized_routing
self.use_xmoe = use_xmoe
def forward(self, input, mask=None): # type: ignore
if self.use_xmoe:
input = self.wg_reduction(input)
with torch.no_grad():
wg_norm = self.wg.norm(p=2.0, dim=1, keepdim=True)
self.wg.mul_(1.5 / wg_norm)
logits = self._cosine(input, self.wg)
logits = self._make_finite(logits)
else:
logits = self.wg(input)
return top2gating(
logits,
mask,
use_fp32=self.use_fp32,
second_expert_policy=self.second_expert_policy,
normalize_gate_prob_before_dropping=self.normalize_gate_prob_before_dropping,
eval_mode=not self.training,
moe_eval_capacity_token_fraction=self.moe_eval_capacity_token_fraction,
batch_prioritized_routing=self.batch_prioritized_routing,
)
def _cosine(self, mat1, mat2, eps=1e-4):
assert mat1.dim() == 2
assert mat2.dim() == 2
# mat1 = F.normalize(mat1, p=2.0, dim=1, eps=eps)
mat2 = F.normalize(mat2.float(), p=2.0, dim=1, eps=eps)
return mat1.float().matmul(mat2.transpose(0, 1)).type_as(mat1)
def _make_finite(self, scores):
ok = scores.isfinite()
if not ok.all():
# NaNs here can break the assignment algorithm
scores[~ok] = scores[ok].min()
return scores