torchscale/examples/fairseq/models/bert.py
2023-03-05 19:24:14 -08:00

485 lines
18 KiB
Python

# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
import logging
from dataclasses import dataclass, field
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from fairseq import utils
from fairseq.dataclass import ChoiceEnum, FairseqDataclass
from fairseq.models import BaseFairseqModel, register_model, register_model_architecture
from fairseq.models.squad import SQuADHead
from fairseq.models.transformer import DEFAULT_MIN_PARAMS_TO_WRAP, Embedding
from fairseq.modules import PositionalEmbedding
from omegaconf import II
try:
from apex.normalization import FusedLayerNorm as LayerNorm
except ModuleNotFoundError:
from torch.nn import LayerNorm
from torchscale.architecture.config import EncoderConfig
from .machine_translation import MTEncoder as Encoder
DEFAULT_MAX_SOURCE_POSITIONS = 1024
logger = logging.getLogger(__name__)
@dataclass
class BertConfig(FairseqDataclass):
activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field(
default="relu", metadata={"help": "activation function to use"}
)
dropout: float = field(default=0.1, metadata={"help": "dropout probability"})
attention_dropout: float = field(
default=0.0, metadata={"help": "dropout probability for attention weights"}
)
activation_dropout: float = field(
default=0.0, metadata={"help": "dropout probability after activation in FFN."}
)
encoder_embed_dim: int = field(
default=512, metadata={"help": "encoder embedding dimension"}
)
encoder_output_dim: int = field(
default=512, metadata={"help": "encoder output dimension"}
)
encoder_input_dim: int = field(
default=512, metadata={"help": "encoder input dimension"}
)
encoder_ffn_embed_dim: int = field(
default=2048, metadata={"help": "encoder embedding dimension for FFN"}
)
encoder_layers: int = field(default=6, metadata={"help": "num encoder layers"})
encoder_attention_heads: int = field(
default=8, metadata={"help": "num encoder attention heads"}
)
encoder_normalize_before: bool = field(
default=False, metadata={"help": "apply layernorm before each encoder block"}
)
no_encoder_final_norm: bool = field(
default=False,
metadata={"help": "don't add an extra layernorm after the last encoder block"},
)
no_token_positional_embeddings: bool = field(
default=False,
metadata={
"help": "if set, disables positional embeddings (outside self attention)"
},
)
share_encoder_input_output_embed: bool = field(
default=False, metadata={"help": "share encoder input and output embeddings"}
)
encoder_learned_pos: bool = field(
default=False,
metadata={"help": "use learned positional embeddings in the encoder"},
)
layernorm_embedding: bool = field(
default=False, metadata={"help": "add layernorm to embedding"}
)
no_scale_embedding: bool = field(
default=False, metadata={"help": "if True, dont scale embeddings"}
)
checkpoint_activations: bool = field(
default=False, metadata={"help": "checkpoint activations at each layer"}
)
offload_activations: bool = field(
default=False,
metadata={"help": "move checkpointed activations to CPU after they are used."},
)
# config for "Reducing Transformer Depth on Demand with Structured Dropout" (Fan et al., 2019)
encoder_layerdrop: float = field(
default=0.0, metadata={"help": "LayerDrop probability for encoder"}
)
encoder_layers_to_keep: Optional[str] = field(
default=None,
metadata={
"help": "which layers to *keep* when pruning as a comma-separated list"
},
)
# config for Fully Sharded Data Parallel (FSDP) training
min_params_to_wrap: int = field(
default=DEFAULT_MIN_PARAMS_TO_WRAP,
metadata={
"help": (
"minimum number of params for a layer to be wrapped with FSDP() when "
"training with --ddp-backend=fully_sharded. Smaller values will "
"improve memory efficiency, but may make torch.distributed "
"communication less efficient due to smaller input sizes. This option "
"is set to 0 (i.e., always wrap) when --checkpoint-activations or "
"--offload-activations are passed."
)
},
)
max_source_positions: int = field(
default=1024, metadata={"help": "max source positions"}
)
pooler_activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field(
default="relu", metadata={"help": "activation function to use for pooler layer"}
)
pooler_dropout: float = field(
default=0.0,
metadata={"help": "dropout probability in the masked_lm pooler layers"},
)
# options from other parts of the config
# add_bos_token: bool = II("task.add_bos_token")
# tokens_per_sample: int = II("task.tokens_per_sample")
tpu: bool = II("common.tpu")
rel_pos_buckets: int = field(default=0, metadata={"help": ""})
max_rel_pos: int = field(default=0, metadata={"help": ""})
moe_freq: int = field(
default=0,
metadata={"help": "Frequency at which we insert MoE Transformer layers"},
)
moe_expert_count: int = field(
default=0, metadata={"help": "Number of experts in each MoE Layer"}
)
moe_gating_use_fp32: bool = field(
default=False,
metadata={"help": "Use FP32 computations in MoE top2 gating function"},
)
moe_second_expert_policy: str = field(
default="sampling",
metadata={"help": "policy for second expert, options: all/sampling/random"},
)
moe_normalize_gate_prob_before_dropping: bool = field(
default=False,
metadata={
"help": "whether to normalize gate probs before or after dropping experts for capacity and randomization"
},
)
moe_expert_ffn_dim: Optional[int] = field(
default=None, metadata={"help": "MoE expert FFN dimension"}
)
moe_top1_expert: Optional[bool] = field(
default=False, metadata={"help": "Use top1 gate instead of top2"}
)
moe_eval_capacity_token_fraction: Optional[float] = field(
default=0.25,
metadata={
"help": (
"Default: 0.25, Fraction of tokens as capacity during validation, "
"if set to negative, use same as training. range: (0.0, 1.0]."
)
},
)
moe_normalize_expert_grad: Optional[str] = field(
default="world_size",
metadata={
"help": "Divide expert gradients by (1) 'world_size' (2) 'sqrt_world_size'"
},
)
record_a2a_perf_stats: Optional[bool] = field(
default=False,
metadata={"help": "records all to all perf stats during distributed training"},
)
dummy_a2a: Optional[bool] = field(
default=False,
metadata={
"help": "By passes all to all during distributed training by returning the input buffer as output"
},
)
moe_batch_prioritized_routing: Optional[bool] = field(
default=False,
metadata={
"help": "if true orders token by the gate prob before capacity dropping."
},
)
ddp_rank: int = II("distributed_training.distributed_rank")
deepnorm: Optional[bool] = field(
default=False,
)
subln: Optional[bool] = field(
default=False,
)
@register_model("mlm", dataclass=BertConfig)
class BertModel(BaseFairseqModel):
def __init__(self, args, encoder):
super().__init__()
self.args = args
self.encoder = encoder
self.padding_idx = self.encoder.embed_tokens.padding_idx
self.classification_heads = nn.ModuleDict()
@classmethod
def build_model(cls, args, task):
"""Build a new model instance."""
args.max_source_positions = getattr(
args, "max_source_positions", DEFAULT_MAX_SOURCE_POSITIONS
)
embed_tokens = cls.build_embedding(
args, task.dictionary, args.encoder_embed_dim
)
embed_positions = (
PositionalEmbedding(
args.max_source_positions,
args.encoder_embed_dim,
task.dictionary.pad(),
learned=args.encoder_learned_pos,
)
if not args.no_token_positional_embeddings
else None
)
lm_head = cls.build_lm_head(
args,
args.encoder_embed_dim,
len(task.dictionary),
args.activation_fn,
weight=embed_tokens.weight,
)
config = EncoderConfig()
config.override(args)
encoder = Encoder(
config,
embed_tokens=embed_tokens,
embed_positions=embed_positions,
output_projection=lm_head,
is_encoder_decoder=False,
dictionary=task.dictionary,
)
return cls(args, encoder)
@classmethod
def build_embedding(cls, args, dictionary, embed_dim, path=None):
embed_tokens = Embedding(len(dictionary), embed_dim, dictionary.pad())
return embed_tokens
@classmethod
def build_lm_head(cls, args, embed_dim, output_dim, activation_fn, weight):
return LMHead(embed_dim, output_dim, activation_fn, weight)
def output_layer(self, features, masked_tokens=None):
return self.encoder.output_projection(features, masked_tokens=masked_tokens)
def register_classification_head(
self, name, num_classes=None, inner_dim=None, **kwargs
):
"""Register a classification head."""
if name in self.classification_heads:
prev_num_classes = self.classification_heads[name].out_proj.out_features
prev_inner_dim = self.classification_heads[name].dense.out_features
if num_classes != prev_num_classes or inner_dim != prev_inner_dim:
logger.warning(
're-registering head "{}" with num_classes {} (prev: {}) '
"and inner_dim {} (prev: {})".format(
name, num_classes, prev_num_classes, inner_dim, prev_inner_dim
)
)
self.classification_heads[name] = ClassificationHead(
self.args.encoder_embed_dim,
inner_dim or self.args.encoder_embed_dim,
num_classes,
self.args.pooler_activation_fn,
self.args.pooler_dropout,
)
def register_question_answering_head(self, name, num_classes=None):
self.classification_heads[name] = SQuADHead(
self.args.encoder_embed_dim,
)
def upgrade_state_dict_named(self, state_dict, name):
prefix = name + "." if name != "" else ""
# upgrade children modules
super().upgrade_state_dict_named(state_dict, name)
# Handle new classification heads present in the state dict.
current_head_names = (
[]
if not hasattr(self, "classification_heads")
else self.classification_heads.keys()
)
keys_to_delete = []
for k in state_dict.keys():
if not k.startswith(prefix + "classification_heads."):
continue
head_name = k[len(prefix + "classification_heads.") :].split(".")[0] # noqa: E203
num_classes = state_dict[
prefix + "classification_heads." + head_name + ".out_proj.weight"
].size(0)
inner_dim = state_dict[
prefix + "classification_heads." + head_name + ".dense.weight"
].size(0)
if getattr(self.args, "load_checkpoint_heads", False):
if head_name not in current_head_names:
self.register_classification_head(head_name, num_classes, inner_dim)
else:
if head_name not in current_head_names:
logger.warning(
"deleting classification head ({}) from checkpoint "
"not present in current model: {}".format(head_name, k)
)
keys_to_delete.append(k)
elif (
num_classes
!= self.classification_heads[head_name].out_proj.out_features
or inner_dim
!= self.classification_heads[head_name].dense.out_features
):
logger.warning(
"deleting classification head ({}) from checkpoint "
"with different dimensions than current model: {}".format(
head_name, k
)
)
keys_to_delete.append(k)
for k in keys_to_delete:
del state_dict[k]
# Copy any newly-added classification heads into the state dict
# with their current weights.
if hasattr(self, "classification_heads"):
cur_state = self.classification_heads.state_dict()
for k, v in cur_state.items():
if prefix + "classification_heads." + k not in state_dict:
logger.info("Overwriting " + prefix + "classification_heads." + k)
state_dict[prefix + "classification_heads." + k] = v
def get_normalized_probs_scriptable(
self,
net_output,
log_probs,
sample = None,
):
logits = net_output[0]
if log_probs:
return utils.log_softmax(logits, dim=-1)
else:
return utils.softmax(logits, dim=-1)
def forward(
self,
src_tokens=None,
features_only=False,
return_all_hiddens=False,
classification_head_name=None,
masked_tokens=None,
**kwargs
):
encoder_out = self.encoder(
src_tokens, features_only=True, return_all_hiddens=return_all_hiddens
)
x, extra = encoder_out["encoder_out"], encoder_out
if classification_head_name is not None:
x = self.classification_heads[classification_head_name](x)
elif not features_only:
x = self.output_layer(x, masked_tokens=masked_tokens)
return x, extra
class ClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(
self,
input_dim,
inner_dim,
num_classes,
activation_fn,
pooler_dropout,
):
super().__init__()
self.dense = nn.Linear(input_dim, inner_dim)
self.activation_fn = utils.get_activation_fn(activation_fn)
self.dropout = nn.Dropout(p=pooler_dropout)
self.out_proj = nn.Linear(inner_dim, num_classes)
def forward(self, features, **kwargs):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x)
x = self.dense(x)
x = self.activation_fn(x.float()).type_as(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
class LMHead(nn.Module):
"""Head for masked language modeling."""
def __init__(self, embed_dim, output_dim, activation_fn, weight=None):
super().__init__()
self.dense = nn.Linear(embed_dim, embed_dim)
self.activation_fn = utils.get_activation_fn(activation_fn)
self.layer_norm = LayerNorm(embed_dim)
if weight is None:
weight = nn.Linear(embed_dim, output_dim, bias=False).weight
self.weight = weight
self.bias = nn.Parameter(torch.zeros(output_dim))
def forward(self, features, masked_tokens=None, **kwargs):
# Only project the masked tokens while training,
# saves both memory and computation
if masked_tokens is not None:
features = features[masked_tokens, :]
x = self.dense(features)
x = self.activation_fn(x.float()).type_as(x)
x = self.layer_norm(x)
# project back to size of vocabulary with bias
x = F.linear(x, self.weight) + self.bias
return x
@register_model_architecture("mlm", "mlm_base")
def base_unilm_architecture(args):
if hasattr(args, "encoder_final_norm"):
args.no_encoder_final_norm = not args.encoder_final_norm
args.dropout = getattr(args, "dropout", 0.1)
args.attention_dropout = getattr(args, "attention_dropout", 0.0)
args.activation_dropout = getattr(args, "activation_dropout", 0.0)
args.pooler_dropout = getattr(args, "pooler_dropout", 0.0)
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 768)
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 3072)
args.encoder_layers = getattr(args, "encoder_layers", 12)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 12)
args.encoder_learned_pos = getattr(args, "encoder_learned_pos", True)
args.activation_fn = getattr(args, "activation_fn", "gelu")
args.pooler_activation_fn = getattr(args, "pooler_activation_fn", "tanh")
args.encoder_layerdrop = getattr(args, "encoder_layerdrop", 0)
args.encoder_layers_to_keep = getattr(args, "encoder_layers_to_keep", None)
# args.add_bos_token = getattr(args, "add_bos_token", False)
args.no_token_positional_embeddings = getattr(
args, "no_token_positional_embeddings", False
)
args.share_encoder_input_output_embed = getattr(
args, "share_encoder_input_output_embed", True
)
args.encoder_output_dim = getattr(
args, "encoder_output_dim", args.encoder_embed_dim
)
args.encoder_input_dim = getattr(args, "encoder_input_dim", args.encoder_embed_dim)
# Model training is not stable without this
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
args.no_encoder_final_norm = getattr(args, "no_encoder_final_norm", False)
args.no_scale_embedding = getattr(args, "no_scale_embedding", True)
args.layernorm_embedding = getattr(args, "layernorm_embedding", True)
args.checkpoint_activations = getattr(args, "checkpoint_activations", False)
args.offload_activations = getattr(args, "offload_activations", False)
if args.offload_activations:
args.checkpoint_activations = True