2022-04-11 01:29:42 +00:00
import argparse
import os
import torch
import torch . nn . functional as F
import torchaudio
2022-04-21 22:06:43 +00:00
from api import TextToSpeech , format_conditioning
2022-04-15 14:26:11 +00:00
from utils . audio import load_audio , get_voices
2022-04-11 01:29:42 +00:00
from utils . tokenizer import VoiceBpeTokenizer
2022-04-21 22:06:43 +00:00
2022-04-11 01:29:42 +00:00
def split_and_recombine_text ( texts , desired_length = 200 , max_len = 300 ) :
# TODO: also split across '!' and '?'. Attempt to keep quotations together.
texts = [ s . strip ( ) + " . " for s in texts . split ( ' . ' ) ]
i = 0
while i < len ( texts ) :
ltxt = texts [ i ]
if len ( ltxt ) > = desired_length or i == len ( texts ) - 1 :
i + = 1
continue
if len ( ltxt ) + len ( texts [ i + 1 ] ) > max_len :
i + = 1
continue
texts [ i ] = f ' { ltxt } { texts [ i + 1 ] } '
texts . pop ( i + 1 )
return texts
2022-04-21 22:06:43 +00:00
2022-04-11 01:29:42 +00:00
if __name__ == ' __main__ ' :
parser = argparse . ArgumentParser ( )
2022-04-20 23:24:09 +00:00
parser . add_argument ( ' --textfile ' , type = str , help = ' A file containing the text to read. ' , default = " data/riding_hood.txt " )
2022-04-15 14:26:11 +00:00
parser . add_argument ( ' --voice ' , type = str , help = ' Selects the voice to use for generation. See options in voices/ directory (and add your own!) '
2022-04-26 02:07:07 +00:00
' Use the & character to join two voices together. Use a comma to perform inference on multiple voices. ' , default = ' pat ' )
2022-04-15 14:26:11 +00:00
parser . add_argument ( ' --output_path ' , type = str , help = ' Where to store outputs. ' , default = ' results/longform/ ' )
2022-04-20 23:24:09 +00:00
parser . add_argument ( ' --preset ' , type = str , help = ' Which voice preset to use. ' , default = ' standard ' )
2022-04-26 02:05:21 +00:00
parser . add_argument ( ' --regenerate ' , type = str , help = ' Comma-separated list of clip numbers to re-generate, or nothing. ' , default = None )
2022-04-20 23:24:09 +00:00
parser . add_argument ( ' --voice_diversity_intelligibility_slider ' , type = float ,
help = ' How to balance vocal diversity with the quality/intelligibility of the spoken text. 0 means highly diverse voice (not recommended), 1 means maximize intellibility ' ,
default = .5 )
2022-04-11 01:29:42 +00:00
args = parser . parse_args ( )
2022-04-15 14:26:11 +00:00
outpath = args . output_path
voices = get_voices ( )
selected_voices = args . voice . split ( ' , ' )
2022-04-26 02:05:21 +00:00
regenerate = args . regenerate
if regenerate is not None :
regenerate = [ int ( e ) for e in regenerate . split ( ' , ' ) ]
2022-04-15 14:26:11 +00:00
for selected_voice in selected_voices :
voice_outpath = os . path . join ( outpath , selected_voice )
os . makedirs ( voice_outpath , exist_ok = True )
with open ( args . textfile , ' r ' , encoding = ' utf-8 ' ) as f :
text = ' ' . join ( [ l for l in f . readlines ( ) ] )
texts = split_and_recombine_text ( text )
tts = TextToSpeech ( )
2022-04-11 01:29:42 +00:00
2022-04-15 14:26:11 +00:00
if ' & ' in selected_voice :
voice_sel = selected_voice . split ( ' & ' )
else :
voice_sel = [ selected_voice ]
cond_paths = [ ]
for vsel in voice_sel :
if vsel not in voices . keys ( ) :
print ( f ' Error: voice { vsel } not available. Skipping. ' )
continue
cond_paths . extend ( voices [ vsel ] )
if not cond_paths :
print ( ' Error: no valid voices specified. Try again. ' )
2022-04-11 01:29:42 +00:00
2022-04-20 23:24:09 +00:00
conds = [ ]
for cond_path in cond_paths :
c = load_audio ( cond_path , 22050 )
conds . append ( c )
2022-04-21 21:19:36 +00:00
all_parts = [ ]
2022-04-15 14:26:11 +00:00
for j , text in enumerate ( texts ) :
2022-04-26 02:05:21 +00:00
if regenerate is not None and j not in regenerate :
all_parts . append ( load_audio ( os . path . join ( voice_outpath , f ' { j } .wav ' ) , 24000 ) )
continue
2022-04-20 23:24:09 +00:00
gen = tts . tts_with_preset ( text , conds , preset = args . preset , clvp_cvvp_slider = args . voice_diversity_intelligibility_slider )
2022-04-21 21:19:36 +00:00
gen = gen . squeeze ( 0 ) . cpu ( )
torchaudio . save ( os . path . join ( voice_outpath , f ' { j } .wav ' ) , gen , 24000 )
all_parts . append ( gen )
full_audio = torch . cat ( all_parts , dim = - 1 )
torchaudio . save ( os . path . join ( voice_outpath , ' combined.wav ' ) , full_audio , 24000 )
2022-04-11 01:29:42 +00:00