193 lines
7.3 KiB
Python
193 lines
7.3 KiB
Python
|
"""
|
||
|
BSD 3-Clause License
|
||
|
|
||
|
Copyright (c) 2017, Prem Seetharaman
|
||
|
All rights reserved.
|
||
|
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
modification, are permitted provided that the following conditions are met:
|
||
|
|
||
|
* Redistributions of source code must retain the above copyright notice,
|
||
|
this list of conditions and the following disclaimer.
|
||
|
|
||
|
* Redistributions in binary form must reproduce the above copyright notice, this
|
||
|
list of conditions and the following disclaimer in the
|
||
|
documentation and/or other materials provided with the distribution.
|
||
|
|
||
|
* Neither the name of the copyright holder nor the names of its
|
||
|
contributors may be used to endorse or promote products derived from this
|
||
|
software without specific prior written permission.
|
||
|
|
||
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||
|
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||
|
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||
|
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
|
||
|
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||
|
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
|
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
||
|
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
"""
|
||
|
|
||
|
import torch
|
||
|
import numpy as np
|
||
|
import torch.nn.functional as F
|
||
|
from torch.autograd import Variable
|
||
|
from scipy.signal import get_window
|
||
|
from librosa.util import pad_center, tiny
|
||
|
import librosa.util as librosa_util
|
||
|
|
||
|
|
||
|
def window_sumsquare(window, n_frames, hop_length=200, win_length=800,
|
||
|
n_fft=800, dtype=np.float32, norm=None):
|
||
|
"""
|
||
|
# from librosa 0.6
|
||
|
Compute the sum-square envelope of a window function at a given hop length.
|
||
|
|
||
|
This is used to estimate modulation effects induced by windowing
|
||
|
observations in short-time fourier transforms.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
window : string, tuple, number, callable, or list-like
|
||
|
Window specification, as in `get_window`
|
||
|
|
||
|
n_frames : int > 0
|
||
|
The number of analysis frames
|
||
|
|
||
|
hop_length : int > 0
|
||
|
The number of samples to advance between frames
|
||
|
|
||
|
win_length : [optional]
|
||
|
The length of the window function. By default, this matches `n_fft`.
|
||
|
|
||
|
n_fft : int > 0
|
||
|
The length of each analysis frame.
|
||
|
|
||
|
dtype : np.dtype
|
||
|
The data type of the output
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))`
|
||
|
The sum-squared envelope of the window function
|
||
|
"""
|
||
|
if win_length is None:
|
||
|
win_length = n_fft
|
||
|
|
||
|
n = n_fft + hop_length * (n_frames - 1)
|
||
|
x = np.zeros(n, dtype=dtype)
|
||
|
|
||
|
# Compute the squared window at the desired length
|
||
|
win_sq = get_window(window, win_length, fftbins=True)
|
||
|
win_sq = librosa_util.normalize(win_sq, norm=norm)**2
|
||
|
win_sq = librosa_util.pad_center(win_sq, n_fft)
|
||
|
|
||
|
# Fill the envelope
|
||
|
for i in range(n_frames):
|
||
|
sample = i * hop_length
|
||
|
x[sample:min(n, sample + n_fft)] += win_sq[:max(0, min(n_fft, n - sample))]
|
||
|
return x
|
||
|
|
||
|
|
||
|
class STFT(torch.nn.Module):
|
||
|
"""adapted from Prem Seetharaman's https://github.com/pseeth/pytorch-stft"""
|
||
|
def __init__(self, filter_length=800, hop_length=200, win_length=800,
|
||
|
window='hann'):
|
||
|
super(STFT, self).__init__()
|
||
|
self.filter_length = filter_length
|
||
|
self.hop_length = hop_length
|
||
|
self.win_length = win_length
|
||
|
self.window = window
|
||
|
self.forward_transform = None
|
||
|
scale = self.filter_length / self.hop_length
|
||
|
fourier_basis = np.fft.fft(np.eye(self.filter_length))
|
||
|
|
||
|
cutoff = int((self.filter_length / 2 + 1))
|
||
|
fourier_basis = np.vstack([np.real(fourier_basis[:cutoff, :]),
|
||
|
np.imag(fourier_basis[:cutoff, :])])
|
||
|
|
||
|
forward_basis = torch.FloatTensor(fourier_basis[:, None, :])
|
||
|
inverse_basis = torch.FloatTensor(
|
||
|
np.linalg.pinv(scale * fourier_basis).T[:, None, :])
|
||
|
|
||
|
if window is not None:
|
||
|
assert(filter_length >= win_length)
|
||
|
# get window and zero center pad it to filter_length
|
||
|
fft_window = get_window(window, win_length, fftbins=True)
|
||
|
fft_window = pad_center(fft_window, filter_length)
|
||
|
fft_window = torch.from_numpy(fft_window).float()
|
||
|
|
||
|
# window the bases
|
||
|
forward_basis *= fft_window
|
||
|
inverse_basis *= fft_window
|
||
|
|
||
|
self.register_buffer('forward_basis', forward_basis.float())
|
||
|
self.register_buffer('inverse_basis', inverse_basis.float())
|
||
|
|
||
|
def transform(self, input_data):
|
||
|
num_batches = input_data.size(0)
|
||
|
num_samples = input_data.size(1)
|
||
|
|
||
|
self.num_samples = num_samples
|
||
|
|
||
|
# similar to librosa, reflect-pad the input
|
||
|
input_data = input_data.view(num_batches, 1, num_samples)
|
||
|
input_data = F.pad(
|
||
|
input_data.unsqueeze(1),
|
||
|
(int(self.filter_length / 2), int(self.filter_length / 2), 0, 0),
|
||
|
mode='reflect')
|
||
|
input_data = input_data.squeeze(1)
|
||
|
|
||
|
forward_transform = F.conv1d(
|
||
|
input_data,
|
||
|
Variable(self.forward_basis, requires_grad=False),
|
||
|
stride=self.hop_length,
|
||
|
padding=0)
|
||
|
|
||
|
cutoff = int((self.filter_length / 2) + 1)
|
||
|
real_part = forward_transform[:, :cutoff, :]
|
||
|
imag_part = forward_transform[:, cutoff:, :]
|
||
|
|
||
|
magnitude = torch.sqrt(real_part**2 + imag_part**2)
|
||
|
phase = torch.autograd.Variable(
|
||
|
torch.atan2(imag_part.data, real_part.data))
|
||
|
|
||
|
return magnitude, phase
|
||
|
|
||
|
def inverse(self, magnitude, phase):
|
||
|
recombine_magnitude_phase = torch.cat(
|
||
|
[magnitude*torch.cos(phase), magnitude*torch.sin(phase)], dim=1)
|
||
|
|
||
|
inverse_transform = F.conv_transpose1d(
|
||
|
recombine_magnitude_phase,
|
||
|
Variable(self.inverse_basis, requires_grad=False),
|
||
|
stride=self.hop_length,
|
||
|
padding=0)
|
||
|
|
||
|
if self.window is not None:
|
||
|
window_sum = window_sumsquare(
|
||
|
self.window, magnitude.size(-1), hop_length=self.hop_length,
|
||
|
win_length=self.win_length, n_fft=self.filter_length,
|
||
|
dtype=np.float32)
|
||
|
# remove modulation effects
|
||
|
approx_nonzero_indices = torch.from_numpy(
|
||
|
np.where(window_sum > tiny(window_sum))[0])
|
||
|
window_sum = torch.autograd.Variable(
|
||
|
torch.from_numpy(window_sum), requires_grad=False)
|
||
|
window_sum = window_sum.cuda() if magnitude.is_cuda else window_sum
|
||
|
inverse_transform[:, :, approx_nonzero_indices] /= window_sum[approx_nonzero_indices]
|
||
|
|
||
|
# scale by hop ratio
|
||
|
inverse_transform *= float(self.filter_length) / self.hop_length
|
||
|
|
||
|
inverse_transform = inverse_transform[:, :, int(self.filter_length/2):]
|
||
|
inverse_transform = inverse_transform[:, :, :-int(self.filter_length/2):]
|
||
|
|
||
|
return inverse_transform
|
||
|
|
||
|
def forward(self, input_data):
|
||
|
self.magnitude, self.phase = self.transform(input_data)
|
||
|
reconstruction = self.inverse(self.magnitude, self.phase)
|
||
|
return reconstruction
|