Add files required for hifigan, including autoregressive.py modification
This commit is contained in:
parent
95f679f4ba
commit
156bb5e7da
740
tortoise/api_fast.py
Normal file
740
tortoise/api_fast.py
Normal file
|
@ -0,0 +1,740 @@
|
|||
import os
|
||||
import random
|
||||
import uuid
|
||||
from time import time
|
||||
from urllib import request
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import progressbar
|
||||
import torchaudio
|
||||
import numpy as np
|
||||
from tortoise.models.classifier import AudioMiniEncoderWithClassifierHead
|
||||
from tortoise.models.diffusion_decoder import DiffusionTts
|
||||
from tortoise.models.autoregressive import UnifiedVoice
|
||||
from tqdm import tqdm
|
||||
from tortoise.models.arch_util import TorchMelSpectrogram
|
||||
from tortoise.models.clvp import CLVP
|
||||
from tortoise.models.cvvp import CVVP
|
||||
from tortoise.models.hifigan_decoder import HifiganGenerator
|
||||
from tortoise.models.random_latent_generator import RandomLatentConverter
|
||||
from tortoise.models.vocoder import UnivNetGenerator
|
||||
from tortoise.utils.audio import wav_to_univnet_mel, denormalize_tacotron_mel
|
||||
from tortoise.utils.diffusion import SpacedDiffusion, space_timesteps, get_named_beta_schedule
|
||||
from tortoise.utils.tokenizer import VoiceBpeTokenizer
|
||||
from tortoise.utils.wav2vec_alignment import Wav2VecAlignment
|
||||
from contextlib import contextmanager
|
||||
# from tortoise.models.stream_generator import init_stream_support
|
||||
from huggingface_hub import hf_hub_download
|
||||
|
||||
from tortoise.utils.device import get_device, get_device_name, get_device_batch_size, print_stats, do_gc
|
||||
|
||||
pbar = None
|
||||
# init_stream_support()
|
||||
STOP_SIGNAL = False
|
||||
DEFAULT_MODELS_DIR = os.path.join(os.path.expanduser('~'), '.cache', 'tortoise', 'models')
|
||||
MODELS_DIR = os.environ.get('TORTOISE_MODELS_DIR', DEFAULT_MODELS_DIR)
|
||||
|
||||
MODELS = {
|
||||
'autoregressive.pth': 'https://huggingface.co/Manmay/tortoise-tts/resolve/main/autoregressive.pth',
|
||||
'classifier.pth': 'https://huggingface.co/Manmay/tortoise-tts/resolve/main/classifier.pth',
|
||||
'rlg_auto.pth': 'https://huggingface.co/Manmay/tortoise-tts/resolve/main/rlg_auto.pth',
|
||||
'hifidecoder.pth': 'https://huggingface.co/Manmay/tortoise-tts/resolve/main/hifidecoder.pth',
|
||||
}
|
||||
|
||||
def download_models(specific_models=None):
|
||||
"""
|
||||
Call to download all the models that Tortoise uses.
|
||||
"""
|
||||
os.makedirs(MODELS_DIR, exist_ok=True)
|
||||
|
||||
def show_progress(block_num, block_size, total_size):
|
||||
global pbar
|
||||
if pbar is None:
|
||||
pbar = progressbar.ProgressBar(maxval=total_size)
|
||||
pbar.start()
|
||||
|
||||
downloaded = block_num * block_size
|
||||
if downloaded < total_size:
|
||||
pbar.update(downloaded)
|
||||
else:
|
||||
pbar.finish()
|
||||
pbar = None
|
||||
|
||||
for model_name, url in MODELS.items():
|
||||
if specific_models is not None and model_name not in specific_models:
|
||||
continue
|
||||
model_path = os.path.join(MODELS_DIR, model_name)
|
||||
if os.path.exists(model_path):
|
||||
continue
|
||||
print(f'Downloading {model_name} from {url}...')
|
||||
request.urlretrieve(url, model_path, show_progress)
|
||||
print('Done.')
|
||||
|
||||
def get_model_path(model_name, models_dir=MODELS_DIR):
|
||||
"""
|
||||
Get path to given model, download it if it doesn't exist.
|
||||
"""
|
||||
if model_name not in MODELS:
|
||||
raise ValueError(f'Model {model_name} not found in available models.')
|
||||
model_path = os.path.join(models_dir, model_name)
|
||||
if not os.path.exists(model_path) and models_dir == MODELS_DIR:
|
||||
download_models([model_name])
|
||||
# Add the logic to download models if not available
|
||||
# model_path = hf_hub_download(repo_id="Manmay/tortoise-tts", filename=model_name, cache_dir=models_dir)
|
||||
return model_path
|
||||
|
||||
def check_for_kill_signal():
|
||||
global STOP_SIGNAL
|
||||
if STOP_SIGNAL:
|
||||
STOP_SIGNAL = False
|
||||
raise Exception("Kill signal detected")
|
||||
|
||||
def pad_or_truncate(t, length):
|
||||
"""
|
||||
Utility function for forcing <t> to have the specified sequence length, whether by clipping it or padding it with 0s.
|
||||
"""
|
||||
if t.shape[-1] == length:
|
||||
return t
|
||||
elif t.shape[-1] < length:
|
||||
return F.pad(t, (0, length-t.shape[-1]))
|
||||
else:
|
||||
return t[..., :length]
|
||||
|
||||
|
||||
def load_discrete_vocoder_diffuser(trained_diffusion_steps=4000, desired_diffusion_steps=200, cond_free=True, cond_free_k=1):
|
||||
"""
|
||||
Helper function to load a GaussianDiffusion instance configured for use as a vocoder.
|
||||
"""
|
||||
return SpacedDiffusion(use_timesteps=space_timesteps(trained_diffusion_steps, [desired_diffusion_steps]), model_mean_type='epsilon',
|
||||
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', trained_diffusion_steps),
|
||||
conditioning_free=cond_free, conditioning_free_k=cond_free_k)
|
||||
|
||||
|
||||
def format_conditioning(clip, cond_length=132300, device="cuda" if not torch.backends.mps.is_available() else 'mps'):
|
||||
"""
|
||||
Converts the given conditioning signal to a MEL spectrogram and clips it as expected by the models.
|
||||
"""
|
||||
gap = clip.shape[-1] - cond_length
|
||||
if gap < 0:
|
||||
clip = F.pad(clip, pad=(0, abs(gap)))
|
||||
elif gap > 0:
|
||||
rand_start = random.randint(0, gap)
|
||||
clip = clip[:, rand_start:rand_start + cond_length]
|
||||
mel_clip = TorchMelSpectrogram()(clip.unsqueeze(0)).squeeze(0)
|
||||
return mel_clip.unsqueeze(0).to(device)
|
||||
|
||||
|
||||
def fix_autoregressive_output(codes, stop_token, complain=True):
|
||||
"""
|
||||
This function performs some padding on coded audio that fixes a mismatch issue between what the diffusion model was
|
||||
trained on and what the autoregressive code generator creates (which has no padding or end).
|
||||
This is highly specific to the DVAE being used, so this particular coding will not necessarily work if used with
|
||||
a different DVAE. This can be inferred by feeding a audio clip padded with lots of zeros on the end through the DVAE
|
||||
and copying out the last few codes.
|
||||
|
||||
Failing to do this padding will produce speech with a harsh end that sounds like "BLAH" or similar.
|
||||
"""
|
||||
# Strip off the autoregressive stop token and add padding.
|
||||
stop_token_indices = (codes == stop_token).nonzero()
|
||||
if len(stop_token_indices) == 0:
|
||||
if complain:
|
||||
print("No stop tokens found in one of the generated voice clips. This typically means the spoken audio is "
|
||||
"too long. In some cases, the output will still be good, though. Listen to it and if it is missing words, "
|
||||
"try breaking up your input text.")
|
||||
return codes
|
||||
else:
|
||||
codes[stop_token_indices] = 83
|
||||
stm = stop_token_indices.min().item()
|
||||
codes[stm:] = 83
|
||||
if stm - 3 < codes.shape[0]:
|
||||
codes[-3] = 45
|
||||
codes[-2] = 45
|
||||
codes[-1] = 248
|
||||
|
||||
return codes
|
||||
|
||||
|
||||
def do_spectrogram_diffusion(diffusion_model, diffuser, latents, conditioning_latents, temperature=1, verbose=True):
|
||||
"""
|
||||
Uses the specified diffusion model to convert discrete codes into a spectrogram.
|
||||
"""
|
||||
with torch.no_grad():
|
||||
output_seq_len = latents.shape[1] * 4 * 24000 // 22050 # This diffusion model converts from 22kHz spectrogram codes to a 24kHz spectrogram signal.
|
||||
output_shape = (latents.shape[0], 100, output_seq_len)
|
||||
precomputed_embeddings = diffusion_model.timestep_independent(latents, conditioning_latents, output_seq_len, False)
|
||||
|
||||
noise = torch.randn(output_shape, device=latents.device) * temperature
|
||||
mel = diffuser.p_sample_loop(diffusion_model, output_shape, noise=noise,
|
||||
model_kwargs={'precomputed_aligned_embeddings': precomputed_embeddings},
|
||||
progress=verbose)
|
||||
return denormalize_tacotron_mel(mel)[:,:,:output_seq_len]
|
||||
|
||||
|
||||
def classify_audio_clip(clip):
|
||||
"""
|
||||
Returns whether or not Tortoises' classifier thinks the given clip came from Tortoise.
|
||||
:param clip: torch tensor containing audio waveform data (get it from load_audio)
|
||||
:return: True if the clip was classified as coming from Tortoise and false if it was classified as real.
|
||||
"""
|
||||
classifier = AudioMiniEncoderWithClassifierHead(2, spec_dim=1, embedding_dim=512, depth=5, downsample_factor=4,
|
||||
resnet_blocks=2, attn_blocks=4, num_attn_heads=4, base_channels=32,
|
||||
dropout=0, kernel_size=5, distribute_zero_label=False)
|
||||
classifier.load_state_dict(torch.load(get_model_path('classifier.pth'), map_location=torch.device('cpu')))
|
||||
clip = clip.cpu().unsqueeze(0)
|
||||
results = F.softmax(classifier(clip), dim=-1)
|
||||
return results[0][0]
|
||||
|
||||
|
||||
def pick_best_batch_size_for_gpu():
|
||||
"""
|
||||
Tries to pick a batch size that will fit in your GPU. These sizes aren't guaranteed to work, but they should give
|
||||
you a good shot.
|
||||
"""
|
||||
if torch.cuda.is_available():
|
||||
_, available = torch.cuda.mem_get_info()
|
||||
availableGb = available / (1024 ** 3)
|
||||
if availableGb > 14:
|
||||
return 16
|
||||
elif availableGb > 10:
|
||||
return 8
|
||||
elif availableGb > 7:
|
||||
return 4
|
||||
if torch.backends.mps.is_available():
|
||||
import psutil
|
||||
available = psutil.virtual_memory().total
|
||||
availableGb = available / (1024 ** 3)
|
||||
if availableGb > 14:
|
||||
return 16
|
||||
elif availableGb > 10:
|
||||
return 8
|
||||
elif availableGb > 7:
|
||||
return 4
|
||||
return 1
|
||||
|
||||
# Taken from MRQ's api
|
||||
@torch.inference_mode()
|
||||
def format_conditioning(clip, cond_length=132300, device='cuda', sampling_rate=22050):
|
||||
"""
|
||||
Converts the given conditioning signal to a MEL spectrogram and clips it as expected by the models.
|
||||
"""
|
||||
gap = clip.shape[-1] - cond_length
|
||||
if gap < 0:
|
||||
clip = F.pad(clip, pad=(0, abs(gap)))
|
||||
elif gap > 0:
|
||||
rand_start = random.randint(0, gap)
|
||||
clip = clip[:, rand_start:rand_start + cond_length]
|
||||
mel_clip = TorchMelSpectrogram(sampling_rate=sampling_rate)(clip.unsqueeze(0)).squeeze(0)
|
||||
mel_clip = mel_clip.unsqueeze(0)
|
||||
return migrate_to_device(mel_clip, device)
|
||||
|
||||
# Taken from MRQ's api
|
||||
def hash_file(path, algo="md5", buffer_size=0):
|
||||
import hashlib
|
||||
|
||||
hash = None
|
||||
if algo == "md5":
|
||||
hash = hashlib.md5()
|
||||
elif algo == "sha1":
|
||||
hash = hashlib.sha1()
|
||||
else:
|
||||
raise Exception(f'Unknown hash algorithm specified: {algo}')
|
||||
|
||||
if not os.path.exists(path):
|
||||
raise Exception(f'Path not found: {path}')
|
||||
|
||||
with open(path, 'rb') as f:
|
||||
if buffer_size > 0:
|
||||
while True:
|
||||
data = f.read(buffer_size)
|
||||
if not data:
|
||||
break
|
||||
hash.update(data)
|
||||
else:
|
||||
hash.update(f.read())
|
||||
|
||||
return "{0}".format(hash.hexdigest())
|
||||
|
||||
# Taken from MRQ's api
|
||||
def migrate_to_device( t, device ):
|
||||
if t is None:
|
||||
return t
|
||||
|
||||
if not hasattr(t, 'device'):
|
||||
t.device = device
|
||||
t.manually_track_device = True
|
||||
elif t.device == device:
|
||||
return t
|
||||
|
||||
if hasattr(t, 'manually_track_device') and t.manually_track_device:
|
||||
t.device = device
|
||||
|
||||
t = t.to(device)
|
||||
|
||||
do_gc()
|
||||
|
||||
return t
|
||||
|
||||
class TextToSpeech:
|
||||
"""
|
||||
Main entry point into Tortoise.
|
||||
"""
|
||||
|
||||
def __init__(self, autoregressive_batch_size=None, models_dir=MODELS_DIR,
|
||||
enable_redaction=True, kv_cache=False, use_deepspeed=False, half=False, device=None,
|
||||
tokenizer_vocab_file=None, tokenizer_basic=False,
|
||||
autoregressive_model_path=None, tokenizer_json=None,
|
||||
minor_optimizations=True,
|
||||
input_sample_rate=22050, output_sample_rate=24000,
|
||||
):
|
||||
|
||||
"""
|
||||
Constructor
|
||||
:param autoregressive_batch_size: Specifies how many samples to generate per batch. Lower this if you are seeing
|
||||
GPU OOM errors. Larger numbers generates slightly faster.
|
||||
:param models_dir: Where model weights are stored. This should only be specified if you are providing your own
|
||||
models, otherwise use the defaults.
|
||||
:param enable_redaction: When true, text enclosed in brackets are automatically redacted from the spoken output
|
||||
(but are still rendered by the model). This can be used for prompt engineering.
|
||||
Default is true.
|
||||
:param device: Device to use when running the model. If omitted, the device will be automatically chosen.
|
||||
"""
|
||||
self.use_deepspeed = use_deepspeed # Store deepspeed
|
||||
self.use_kv_cache = kv_cache # Store KV cache
|
||||
self.preloaded_tensors = minor_optimizations
|
||||
self.input_sample_rate = input_sample_rate
|
||||
self.output_sample_rate = output_sample_rate
|
||||
|
||||
self.models_dir = models_dir
|
||||
self.autoregressive_batch_size = pick_best_batch_size_for_gpu() if autoregressive_batch_size is None else autoregressive_batch_size
|
||||
self.enable_redaction = enable_redaction
|
||||
self.device = torch.device('cuda' if torch.cuda.is_available() else'cpu')
|
||||
if torch.backends.mps.is_available():
|
||||
self.device = torch.device('mps')
|
||||
if self.enable_redaction:
|
||||
self.aligner = Wav2VecAlignment()
|
||||
|
||||
self.load_tokenizer_json(tokenizer_json)
|
||||
|
||||
self.half = half
|
||||
if os.path.exists(f'{models_dir}/autoregressive.ptt'):
|
||||
# Assume this is a traced directory.
|
||||
self.autoregressive = torch.jit.load(f'{models_dir}/autoregressive.ptt')
|
||||
else:
|
||||
if not autoregressive_model_path or not os.path.exists(autoregressive_model_path):
|
||||
autoregressive_model_path = get_model_path('autoregressive.pth', models_dir)
|
||||
|
||||
self.load_autoregressive_model(autoregressive_model_path)
|
||||
|
||||
# self.autoregressive = UnifiedVoice(max_mel_tokens=604, max_text_tokens=402, max_conditioning_inputs=2, layers=30,
|
||||
# model_dim=1024,
|
||||
# heads=16, number_text_tokens=255, start_text_token=255, checkpointing=False,
|
||||
# train_solo_embeddings=False).to(self.device).eval()
|
||||
# self.autoregressive.load_state_dict(torch.load(autoregressive_model_path, weights_only=True), strict=False)
|
||||
# self.autoregressive.post_init_gpt2_config(use_deepspeed=use_deepspeed, kv_cache=kv_cache, half=self.half)
|
||||
# self.autoregressive = migrate_to_device(self.autoregressive, self.device)
|
||||
# print(f"Loaded autoregressive model")
|
||||
|
||||
self.hifi_decoder = HifiganGenerator(in_channels=1024, out_channels = 1, resblock_type = "1",
|
||||
resblock_dilation_sizes = [[1, 3, 5], [1, 3, 5], [1, 3, 5]], resblock_kernel_sizes = [3, 7, 11],
|
||||
upsample_kernel_sizes = [16, 16, 4, 4], upsample_initial_channel = 512, upsample_factors = [8, 8, 2, 2],
|
||||
cond_channels=1024).to(self.device).eval()
|
||||
hifi_model = torch.load(get_model_path('hifidecoder.pth'))
|
||||
self.hifi_decoder.load_state_dict(hifi_model, strict=False)
|
||||
self.hifi_decoder.to(self.device)
|
||||
# Random latent generators (RLGs) are loaded lazily.
|
||||
self.rlg_auto = None
|
||||
|
||||
# Taken from MRQ's api.py
|
||||
def load_autoregressive_model(self, autoregressive_model_path, is_xtts=False):
|
||||
if hasattr(self,"autoregressive_model_path") and os.path.samefile(self.autoregressive_model_path, autoregressive_model_path):
|
||||
return
|
||||
|
||||
self.autoregressive_model_path = autoregressive_model_path if autoregressive_model_path and os.path.exists(autoregressive_model_path) else get_model_path('autoregressive.pth', self.models_dir)
|
||||
new_hash = hash_file(self.autoregressive_model_path)
|
||||
|
||||
if hasattr(self,"autoregressive_model_hash") and self.autoregressive_model_hash == new_hash:
|
||||
return
|
||||
|
||||
self.autoregressive_model_hash = new_hash
|
||||
|
||||
self.loading = True
|
||||
print(f"Loading autoregressive model: {self.autoregressive_model_path}")
|
||||
|
||||
if hasattr(self, 'autoregressive'):
|
||||
del self.autoregressive
|
||||
|
||||
# XTTS requires a different "dimensionality" for its autoregressive model
|
||||
if new_hash == "e4ce21eae0043f7691d6a6c8540b74b8" or is_xtts:
|
||||
dimensionality = {
|
||||
"max_mel_tokens": 605,
|
||||
"max_text_tokens": 402,
|
||||
"max_prompt_tokens": 70,
|
||||
"max_conditioning_inputs": 1,
|
||||
"layers": 30,
|
||||
"model_dim": 1024,
|
||||
"heads": 16,
|
||||
"number_text_tokens": 5023, # -1
|
||||
"start_text_token": 261,
|
||||
"stop_text_token": 0,
|
||||
"number_mel_codes": 8194,
|
||||
"start_mel_token": 8192,
|
||||
"stop_mel_token": 8193,
|
||||
}
|
||||
else:
|
||||
dimensionality = {
|
||||
"max_mel_tokens": 604,
|
||||
"max_text_tokens": 402,
|
||||
"max_conditioning_inputs": 2,
|
||||
"layers": 30,
|
||||
"model_dim": 1024,
|
||||
"heads": 16,
|
||||
"number_text_tokens": 255,
|
||||
"start_text_token": 255,
|
||||
"checkpointing": False,
|
||||
"train_solo_embeddings": False
|
||||
}
|
||||
|
||||
self.autoregressive = UnifiedVoice(**dimensionality).cpu().eval()
|
||||
self.autoregressive.load_state_dict(torch.load(self.autoregressive_model_path))
|
||||
self.autoregressive.post_init_gpt2_config(use_deepspeed=self.use_deepspeed, kv_cache=self.use_kv_cache)
|
||||
if self.preloaded_tensors:
|
||||
self.autoregressive = migrate_to_device( self.autoregressive, self.device )
|
||||
|
||||
self.loading = False
|
||||
print(f"Loaded autoregressive model")
|
||||
|
||||
# Taken from MRQ's modified api.py
|
||||
def load_tokenizer_json(self, tokenizer_json):
|
||||
if hasattr(self,"tokenizer_json") and os.path.samefile(self.tokenizer_json, tokenizer_json):
|
||||
return
|
||||
|
||||
self.loading = True
|
||||
self.tokenizer_json = tokenizer_json if tokenizer_json else os.path.join(os.path.dirname(os.path.realpath(__file__)), '../tortoise/data/tokenizer.json')
|
||||
print("Loading tokenizer JSON:", self.tokenizer_json)
|
||||
|
||||
if hasattr(self, 'tokenizer'):
|
||||
del self.tokenizer
|
||||
|
||||
self.tokenizer = VoiceBpeTokenizer(vocab_file=self.tokenizer_json)
|
||||
self.loading = False
|
||||
print(f"Loaded tokenizer")
|
||||
|
||||
def get_conditioning_latents(self, voice_samples, return_mels=False, verbose=False, slices=1, max_chunk_size=None, force_cpu=False, original_ar=False, original_diffusion=False):
|
||||
"""
|
||||
Transforms one or more voice_samples into a tuple (autoregressive_conditioning_latent, diffusion_conditioning_latent).
|
||||
These are expressive learned latents that encode aspects of the provided clips like voice, intonation, and acoustic
|
||||
properties.
|
||||
:param voice_samples: List of 2 or more ~10 second reference clips, which should be torch tensors containing 22.05kHz waveform data.
|
||||
"""
|
||||
|
||||
with torch.no_grad():
|
||||
# computing conditional latents requires being done on the CPU if using DML because M$ still hasn't implemented some core functions
|
||||
if get_device_name() == "dml":
|
||||
force_cpu = True
|
||||
device = torch.device('cpu') if force_cpu else self.device
|
||||
|
||||
if not isinstance(voice_samples, list):
|
||||
voice_samples = [voice_samples]
|
||||
|
||||
resampler_22K = torchaudio.transforms.Resample(
|
||||
self.input_sample_rate,
|
||||
22050,
|
||||
lowpass_filter_width=16,
|
||||
rolloff=0.85,
|
||||
resampling_method="kaiser_window",
|
||||
beta=8.555504641634386,
|
||||
).to(device)
|
||||
|
||||
resampler_24K = torchaudio.transforms.Resample(
|
||||
self.input_sample_rate,
|
||||
24000,
|
||||
lowpass_filter_width=16,
|
||||
rolloff=0.85,
|
||||
resampling_method="kaiser_window",
|
||||
beta=8.555504641634386,
|
||||
).to(device)
|
||||
|
||||
voice_samples = [migrate_to_device(v, device) for v in voice_samples]
|
||||
|
||||
auto_conds = []
|
||||
diffusion_conds = []
|
||||
|
||||
if original_ar:
|
||||
samples = [resampler_22K(sample) for sample in voice_samples]
|
||||
for sample in tqdm(samples, desc="Computing AR conditioning latents..."):
|
||||
auto_conds.append(format_conditioning(sample, device=device, sampling_rate=self.input_sample_rate, cond_length=132300))
|
||||
else:
|
||||
samples = [resampler_22K(sample) for sample in voice_samples]
|
||||
concat = torch.cat(samples, dim=-1)
|
||||
chunk_size = concat.shape[-1]
|
||||
|
||||
if slices == 0:
|
||||
slices = 1
|
||||
elif max_chunk_size is not None and chunk_size > max_chunk_size:
|
||||
slices = 1
|
||||
while int(chunk_size / slices) > max_chunk_size:
|
||||
slices = slices + 1
|
||||
|
||||
chunks = torch.chunk(concat, slices, dim=1)
|
||||
chunk_size = chunks[0].shape[-1]
|
||||
|
||||
for chunk in tqdm(chunks, desc="Computing AR conditioning latents..."):
|
||||
auto_conds.append(format_conditioning(chunk, device=device, sampling_rate=self.input_sample_rate, cond_length=chunk_size))
|
||||
|
||||
auto_conds = torch.stack(auto_conds, dim=1)
|
||||
self.autoregressive = migrate_to_device( self.autoregressive, device )
|
||||
auto_latent = self.autoregressive.get_conditioning(auto_conds)
|
||||
self.autoregressive = migrate_to_device( self.autoregressive, self.device if self.preloaded_tensors else 'cpu' )
|
||||
|
||||
if return_mels:
|
||||
return auto_latent, auto_conds, diffusion_conds
|
||||
else:
|
||||
return auto_latent
|
||||
|
||||
def get_random_conditioning_latents(self):
|
||||
# Lazy-load the RLG models.
|
||||
if self.rlg_auto is None:
|
||||
self.rlg_auto = RandomLatentConverter(1024).eval()
|
||||
self.rlg_auto.load_state_dict(torch.load(get_model_path('rlg_auto.pth', self.models_dir), map_location=torch.device('cpu')))
|
||||
with torch.no_grad():
|
||||
return self.rlg_auto(torch.tensor([0.0]))
|
||||
|
||||
|
||||
# taken from here https://github.com/coqui-ai/TTS/blob/d21f15cc850788f9cdf93dac0321395138665287/TTS/tts/models/xtts.py#L666
|
||||
def handle_chunks(self, wav_gen, wav_gen_prev, wav_overlap, overlap_len):
|
||||
"""Handle chunk formatting in streaming mode"""
|
||||
wav_chunk = wav_gen[:-overlap_len]
|
||||
if wav_gen_prev is not None:
|
||||
wav_chunk = wav_gen[(wav_gen_prev.shape[0] - overlap_len) : -overlap_len]
|
||||
if wav_overlap is not None:
|
||||
crossfade_wav = wav_chunk[:overlap_len]
|
||||
crossfade_wav = crossfade_wav * torch.linspace(0.0, 1.0, overlap_len).to(crossfade_wav.device)
|
||||
wav_chunk[:overlap_len] = wav_overlap * torch.linspace(1.0, 0.0, overlap_len).to(wav_overlap.device)
|
||||
wav_chunk[:overlap_len] += crossfade_wav
|
||||
wav_overlap = wav_gen[-overlap_len:]
|
||||
wav_gen_prev = wav_gen
|
||||
return wav_chunk, wav_gen_prev, wav_overlap
|
||||
|
||||
|
||||
def tts_stream(self, text, voice_samples=None, conditioning_latents=None, k=1, verbose=True, use_deterministic_seed=None,
|
||||
return_deterministic_state=False, overlap_wav_len=1024, stream_chunk_size=40,
|
||||
# autoregressive generation parameters follow
|
||||
num_autoregressive_samples=512, temperature=.8, length_penalty=1, repetition_penalty=2.0, top_p=.8, max_mel_tokens=500,
|
||||
# CVVP parameters follow
|
||||
cvvp_amount=.0,
|
||||
# diffusion generation parameters follow
|
||||
diffusion_iterations=100, cond_free=True, cond_free_k=2, diffusion_temperature=1.0,
|
||||
**hf_generate_kwargs):
|
||||
"""
|
||||
Produces an audio clip of the given text being spoken with the given reference voice.
|
||||
:param text: Text to be spoken.
|
||||
:param voice_samples: List of 2 or more ~10 second reference clips which should be torch tensors containing 22.05kHz waveform data.
|
||||
:param conditioning_latents: A tuple of (autoregressive_conditioning_latent, diffusion_conditioning_latent), which
|
||||
can be provided in lieu of voice_samples. This is ignored unless voice_samples=None.
|
||||
Conditioning latents can be retrieved via get_conditioning_latents().
|
||||
:param k: The number of returned clips. The most likely (as determined by Tortoises' CLVP model) clips are returned.
|
||||
:param verbose: Whether or not to print log messages indicating the progress of creating a clip. Default=true.
|
||||
~~AUTOREGRESSIVE KNOBS~~
|
||||
:param num_autoregressive_samples: Number of samples taken from the autoregressive model, all of which are filtered using CLVP.
|
||||
As Tortoise is a probabilistic model, more samples means a higher probability of creating something "great".
|
||||
:param temperature: The softmax temperature of the autoregressive model.
|
||||
:param length_penalty: A length penalty applied to the autoregressive decoder. Higher settings causes the model to produce more terse outputs.
|
||||
:param repetition_penalty: A penalty that prevents the autoregressive decoder from repeating itself during decoding. Can be used to reduce the incidence
|
||||
of long silences or "uhhhhhhs", etc.
|
||||
:param top_p: P value used in nucleus sampling. (0,1]. Lower values mean the decoder produces more "likely" (aka boring) outputs.
|
||||
:param max_mel_tokens: Restricts the output length. (0,600] integer. Each unit is 1/20 of a second.
|
||||
~~DIFFUSION KNOBS~~
|
||||
:param diffusion_iterations: Number of diffusion steps to perform. [0,4000]. More steps means the network has more chances to iteratively refine
|
||||
the output, which should theoretically mean a higher quality output. Generally a value above 250 is not noticeably better,
|
||||
however.
|
||||
:param cond_free: Whether or not to perform conditioning-free diffusion. Conditioning-free diffusion performs two forward passes for
|
||||
each diffusion step: one with the outputs of the autoregressive model and one with no conditioning priors. The output
|
||||
of the two is blended according to the cond_free_k value below. Conditioning-free diffusion is the real deal, and
|
||||
dramatically improves realism.
|
||||
:param cond_free_k: Knob that determines how to balance the conditioning free signal with the conditioning-present signal. [0,inf].
|
||||
As cond_free_k increases, the output becomes dominated by the conditioning-free signal.
|
||||
Formula is: output=cond_present_output*(cond_free_k+1)-cond_absenct_output*cond_free_k
|
||||
:param diffusion_temperature: Controls the variance of the noise fed into the diffusion model. [0,1]. Values at 0
|
||||
are the "mean" prediction of the diffusion network and will sound bland and smeared.
|
||||
~~OTHER STUFF~~
|
||||
:param hf_generate_kwargs: The huggingface Transformers generate API is used for the autoregressive transformer.
|
||||
Extra keyword args fed to this function get forwarded directly to that API. Documentation
|
||||
here: https://huggingface.co/docs/transformers/internal/generation_utils
|
||||
:return: Generated audio clip(s) as a torch tensor. Shape 1,S if k=1 else, (k,1,S) where S is the sample length.
|
||||
Sample rate is 24kHz.
|
||||
"""
|
||||
deterministic_seed = self.deterministic_state(seed=use_deterministic_seed)
|
||||
|
||||
text_tokens = torch.IntTensor(self.tokenizer.encode(text)).unsqueeze(0).to(self.device)
|
||||
text_tokens = F.pad(text_tokens, (0, 1)) # This may not be necessary.
|
||||
assert text_tokens.shape[-1] < 400, 'Too much text provided. Break the text up into separate segments and re-try inference.'
|
||||
if voice_samples is not None:
|
||||
auto_conditioning = self.get_conditioning_latents(voice_samples, return_mels=False)
|
||||
elif conditioning_latents is not None:
|
||||
latent_tuple = conditioning_latents
|
||||
if len(latent_tuple) == 2:
|
||||
auto_conditioning = conditioning_latents
|
||||
else:
|
||||
auto_conditioning, auto_conds, _ = conditioning_latents
|
||||
else:
|
||||
auto_conditioning = self.get_random_conditioning_latents()
|
||||
|
||||
auto_conditioning = migrate_to_device( auto_conditioning, self.device )
|
||||
|
||||
|
||||
with torch.no_grad():
|
||||
calm_token = 83 # This is the token for coding silence, which is fixed in place with "fix_autoregressive_output"
|
||||
if verbose:
|
||||
print("Generating autoregressive samples..")
|
||||
with torch.autocast(
|
||||
device_type="cuda" , dtype=torch.float16, enabled=self.half
|
||||
):
|
||||
fake_inputs = self.autoregressive.compute_embeddings(
|
||||
auto_conditioning,
|
||||
text_tokens,
|
||||
)
|
||||
gpt_generator = self.autoregressive.get_generator(
|
||||
fake_inputs=fake_inputs,
|
||||
top_k=50,
|
||||
top_p=top_p,
|
||||
temperature=temperature,
|
||||
do_sample=True,
|
||||
num_beams=1,
|
||||
num_return_sequences=1,
|
||||
length_penalty=float(length_penalty),
|
||||
repetition_penalty=float(repetition_penalty),
|
||||
output_attentions=False,
|
||||
output_hidden_states=True,
|
||||
**hf_generate_kwargs,
|
||||
)
|
||||
all_latents = []
|
||||
codes_ = []
|
||||
wav_gen_prev = None
|
||||
wav_overlap = None
|
||||
is_end = False
|
||||
first_buffer = 60
|
||||
while not is_end:
|
||||
try:
|
||||
with torch.autocast(
|
||||
device_type="cuda", dtype=torch.float16, enabled=self.half
|
||||
):
|
||||
codes, latent = next(gpt_generator)
|
||||
all_latents += [latent]
|
||||
codes_ += [codes]
|
||||
except StopIteration:
|
||||
is_end = True
|
||||
|
||||
if is_end or (stream_chunk_size > 0 and len(codes_) >= max(stream_chunk_size, first_buffer)):
|
||||
first_buffer = 0
|
||||
gpt_latents = torch.cat(all_latents, dim=0)[None, :]
|
||||
wav_gen = self.hifi_decoder.inference(gpt_latents.to(self.device), auto_conditioning)
|
||||
wav_gen = wav_gen.squeeze()
|
||||
wav_chunk, wav_gen_prev, wav_overlap = self.handle_chunks(
|
||||
wav_gen.squeeze(), wav_gen_prev, wav_overlap, overlap_wav_len
|
||||
)
|
||||
codes_ = []
|
||||
yield wav_chunk
|
||||
|
||||
def tts(self, text, voice_samples=None, conditioning_latents=None, k=1, verbose=True, use_deterministic_seed=None,
|
||||
# autoregressive generation parameters follow
|
||||
num_autoregressive_samples=512, temperature=.8, length_penalty=6, repetition_penalty=8.0,
|
||||
top_p=.8, max_mel_tokens=500,
|
||||
# CVVP parameters follow
|
||||
cvvp_amount=.0,
|
||||
**hf_generate_kwargs):
|
||||
"""
|
||||
Produces an audio clip of the given text being spoken with the given reference voice.
|
||||
:param text: Text to be spoken.
|
||||
:param voice_samples: List of 2 or more ~10 second reference clips which should be torch tensors containing 22.05kHz waveform data.
|
||||
:param conditioning_latents: A tuple of (autoregressive_conditioning_latent, diffusion_conditioning_latent), which
|
||||
can be provided in lieu of voice_samples. This is ignored unless voice_samples=None.
|
||||
Conditioning latents can be retrieved via get_conditioning_latents().
|
||||
:param k: The number of returned clips. The most likely (as determined by Tortoises' CLVP model) clips are returned.
|
||||
:param verbose: Whether or not to print log messages indicating the progress of creating a clip. Default=true.
|
||||
~~AUTOREGRESSIVE KNOBS~~
|
||||
:param num_autoregressive_samples: Number of samples taken from the autoregressive model, all of which are filtered using CLVP.
|
||||
As Tortoise is a probabilistic model, more samples means a higher probability of creating something "great".
|
||||
:param temperature: The softmax temperature of the autoregressive model.
|
||||
:param length_penalty: A length penalty applied to the autoregressive decoder. Higher settings causes the model to produce more terse outputs.
|
||||
:param repetition_penalty: A penalty that prevents the autoregressive decoder from repeating itself during decoding. Can be used to reduce the incidence
|
||||
of long silences or "uhhhhhhs", etc.
|
||||
:param top_p: P value used in nucleus sampling. (0,1]. Lower values mean the decoder produces more "likely" (aka boring) outputs.
|
||||
:param max_mel_tokens: Restricts the output length. (0,600] integer. Each unit is 1/20 of a second.
|
||||
~~DIFFUSION KNOBS~~
|
||||
:param diffusion_iterations: Number of diffusion steps to perform. [0,4000]. More steps means the network has more chances to iteratively refine
|
||||
the output, which should theoretically mean a higher quality output. Generally a value above 250 is not noticeably better,
|
||||
however.
|
||||
:param cond_free: Whether or not to perform conditioning-free diffusion. Conditioning-free diffusion performs two forward passes for
|
||||
each diffusion step: one with the outputs of the autoregressive model and one with no conditioning priors. The output
|
||||
of the two is blended according to the cond_free_k value below. Conditioning-free diffusion is the real deal, and
|
||||
dramatically improves realism.
|
||||
:param cond_free_k: Knob that determines how to balance the conditioning free signal with the conditioning-present signal. [0,inf].
|
||||
As cond_free_k increases, the output becomes dominated by the conditioning-free signal.
|
||||
Formula is: output=cond_present_output*(cond_free_k+1)-cond_absenct_output*cond_free_k
|
||||
:param diffusion_temperature: Controls the variance of the noise fed into the diffusion model. [0,1]. Values at 0
|
||||
are the "mean" prediction of the diffusion network and will sound bland and smeared.
|
||||
~~OTHER STUFF~~
|
||||
:param hf_generate_kwargs: The huggingface Transformers generate API is used for the autoregressive transformer.
|
||||
Extra keyword args fed to this function get forwarded directly to that API. Documentation
|
||||
here: https://huggingface.co/docs/transformers/internal/generation_utils
|
||||
:return: Generated audio clip(s) as a torch tensor. Shape 1,S if k=1 else, (k,1,S) where S is the sample length.
|
||||
Sample rate is 24kHz.
|
||||
"""
|
||||
deterministic_seed = self.deterministic_state(seed=use_deterministic_seed)
|
||||
|
||||
text_tokens = torch.IntTensor(self.tokenizer.encode(text)).unsqueeze(0).to(self.device)
|
||||
text_tokens = F.pad(text_tokens, (0, 1)) # This may not be necessary.
|
||||
|
||||
assert text_tokens.shape[-1] < 400, 'Too much text provided. Break the text up into separate segments and re-try inference.'
|
||||
if voice_samples is not None:
|
||||
auto_conditioning = self.get_conditioning_latents(voice_samples, return_mels=False)
|
||||
elif conditioning_latents is not None:
|
||||
auto_conditioning = conditioning_latents
|
||||
else:
|
||||
auto_conditioning = self.get_random_conditioning_latents()
|
||||
|
||||
auto_conditioning = migrate_to_device(auto_conditioning, self.device)
|
||||
|
||||
with torch.no_grad():
|
||||
calm_token = 83 # This is the token for coding silence, which is fixed in place with "fix_autoregressive_output"
|
||||
if verbose:
|
||||
print("Generating autoregressive samples..")
|
||||
with torch.autocast(
|
||||
device_type="cuda" , dtype=torch.float16, enabled=self.half
|
||||
):
|
||||
# print("Autoregressive model device:", next(self.autoregressive.parameters()).device)
|
||||
# print("Hifi Decoder model device:", next(self.hifi_decoder.parameters()).device)
|
||||
|
||||
codes = self.autoregressive.inference_speech(auto_conditioning, text_tokens,
|
||||
top_k=50,
|
||||
top_p=top_p,
|
||||
temperature=temperature,
|
||||
do_sample=True,
|
||||
num_beams=1,
|
||||
num_return_sequences=1,
|
||||
length_penalty=float(length_penalty),
|
||||
repetition_penalty=float(repetition_penalty),
|
||||
output_attentions=False,
|
||||
output_hidden_states=True,
|
||||
**hf_generate_kwargs)
|
||||
gpt_latents = self.autoregressive(auto_conditioning.repeat(k, 1), text_tokens.repeat(k, 1),
|
||||
torch.tensor([text_tokens.shape[-1]], device=text_tokens.device), codes,
|
||||
torch.tensor([codes.shape[-1]*self.autoregressive.mel_length_compression], device=text_tokens.device),
|
||||
return_latent=True, clip_inputs=False)
|
||||
if verbose:
|
||||
print("generating audio..")
|
||||
wav_gen = self.hifi_decoder.inference(gpt_latents.to(self.device), auto_conditioning)
|
||||
return wav_gen
|
||||
def deterministic_state(self, seed=None):
|
||||
"""
|
||||
Sets the random seeds that tortoise uses to the current time() and returns that seed so results can be
|
||||
reproduced.
|
||||
"""
|
||||
seed = int(time()) if seed is None else seed
|
||||
torch.manual_seed(seed)
|
||||
random.seed(seed)
|
||||
# Can't currently set this because of CUBLAS. TODO: potentially enable it if necessary.
|
||||
# torch.use_deterministic_algorithms(True)
|
||||
|
||||
return seed
|
|
@ -9,9 +9,6 @@ from transformers.utils.model_parallel_utils import get_device_map, assert_devic
|
|||
from tortoise.models.arch_util import AttentionBlock
|
||||
from tortoise.utils.typical_sampling import TypicalLogitsWarper
|
||||
|
||||
from tortoise.utils.device import get_device_count
|
||||
|
||||
import tortoise.utils.torch_intermediary as ml
|
||||
|
||||
def null_position_embeddings(range, dim):
|
||||
return torch.zeros((range.shape[0], range.shape[1], dim), device=range.device)
|
||||
|
@ -36,23 +33,22 @@ class ResBlock(nn.Module):
|
|||
|
||||
|
||||
class GPT2InferenceModel(GPT2PreTrainedModel):
|
||||
def __init__(self, config, gpt, text_pos_emb, embeddings, norm, linear, kv_cache):
|
||||
def __init__(self, config, gpt, text_pos_emb, embeddings, norm, linear, kv_cache=False):
|
||||
super().__init__(config)
|
||||
self.transformer = gpt
|
||||
self.text_pos_embedding = text_pos_emb
|
||||
self.embeddings = embeddings
|
||||
self.final_norm = norm
|
||||
self.lm_head = nn.Sequential(norm, linear)
|
||||
|
||||
self.kv_cache = kv_cache
|
||||
|
||||
|
||||
# Model parallel
|
||||
self.model_parallel = False
|
||||
self.device_map = None
|
||||
self.cached_mel_emb = None
|
||||
|
||||
def parallelize(self, device_map=None):
|
||||
self.device_map = (
|
||||
get_device_map(len(self.transformer.h), range(get_device_count()))
|
||||
get_device_map(len(self.transformer.h), range(max(1, torch.cuda.device_count())))
|
||||
if device_map is None
|
||||
else device_map
|
||||
)
|
||||
|
@ -67,22 +63,24 @@ class GPT2InferenceModel(GPT2PreTrainedModel):
|
|||
self.lm_head = self.lm_head.to("cpu")
|
||||
self.model_parallel = False
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
if torch.backends.mps.is_available():
|
||||
torch.mps.empty_cache()
|
||||
|
||||
def get_output_embeddings(self):
|
||||
return self.lm_head
|
||||
|
||||
def set_output_embeddings(self, new_embeddings):
|
||||
self.lm_head = new_embeddings
|
||||
|
||||
|
||||
def store_mel_emb(self, mel_emb):
|
||||
self.cached_mel_emb = mel_emb
|
||||
|
||||
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
|
||||
|
||||
token_type_ids = kwargs.get("token_type_ids", None)
|
||||
if not self.kv_cache: past = None
|
||||
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs):
|
||||
token_type_ids = kwargs.get("token_type_ids", None) # usually None
|
||||
if not self.kv_cache:
|
||||
past_key_values = None
|
||||
# only last token for inputs_ids if past is defined in kwargs
|
||||
if past:
|
||||
if past_key_values:
|
||||
input_ids = input_ids[:, -1].unsqueeze(-1)
|
||||
if token_type_ids is not None:
|
||||
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
||||
|
@ -94,13 +92,13 @@ class GPT2InferenceModel(GPT2PreTrainedModel):
|
|||
# create position_ids on the fly for batch generation
|
||||
position_ids = attention_mask.long().cumsum(-1) - 1
|
||||
position_ids.masked_fill_(attention_mask == 0, 1)
|
||||
if past:
|
||||
if past_key_values:
|
||||
position_ids = position_ids[:, -1].unsqueeze(-1)
|
||||
else:
|
||||
position_ids = None
|
||||
return {
|
||||
"input_ids": input_ids,
|
||||
"past_key_values": past,
|
||||
"past_key_values": past_key_values,
|
||||
"use_cache": kwargs.get("use_cache"),
|
||||
"position_ids": position_ids,
|
||||
"attention_mask": attention_mask,
|
||||
|
@ -127,7 +125,9 @@ class GPT2InferenceModel(GPT2PreTrainedModel):
|
|||
assert self.cached_mel_emb is not None
|
||||
assert inputs_embeds is None # Not supported by this inference model.
|
||||
assert labels is None # Training not supported by this inference model.
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
return_dict = (
|
||||
return_dict if return_dict is not None else self.config.use_return_dict
|
||||
)
|
||||
|
||||
# Create embedding
|
||||
mel_len = self.cached_mel_emb.shape[1]
|
||||
|
@ -136,14 +136,17 @@ class GPT2InferenceModel(GPT2PreTrainedModel):
|
|||
text_emb = self.embeddings(text_inputs)
|
||||
text_emb = text_emb + self.text_pos_embedding(text_emb)
|
||||
if self.cached_mel_emb.shape[0] != text_emb.shape[0]:
|
||||
mel_emb = self.cached_mel_emb.repeat_interleave(text_emb.shape[0]//self.cached_mel_emb.shape[0], 0)
|
||||
else:
|
||||
mel_emb = self.cached_mel_emb.repeat_interleave(
|
||||
text_emb.shape[0] // self.cached_mel_emb.shape[0], 0
|
||||
)
|
||||
else: # this outcome only occurs once per loop in most cases
|
||||
mel_emb = self.cached_mel_emb
|
||||
emb = torch.cat([mel_emb, text_emb], dim=1)
|
||||
else:
|
||||
emb = self.embeddings(input_ids)
|
||||
emb = emb + self.text_pos_embedding.get_fixed_embedding(attention_mask.shape[1]-mel_len, attention_mask.device)
|
||||
|
||||
emb = emb + self.text_pos_embedding.get_fixed_embedding(
|
||||
attention_mask.shape[1] - mel_len, attention_mask.device
|
||||
)
|
||||
transformer_outputs = self.transformer(
|
||||
inputs_embeds=emb,
|
||||
past_key_values=past_key_values,
|
||||
|
@ -162,7 +165,10 @@ class GPT2InferenceModel(GPT2PreTrainedModel):
|
|||
|
||||
# Set device for model parallelism
|
||||
if self.model_parallel:
|
||||
torch.cuda.set_device(self.transformer.first_device)
|
||||
if torch.backends.mps.is_available():
|
||||
self.to(self.transformer.first_device)
|
||||
else:
|
||||
torch.cuda.set_device(self.transformer.first_device)
|
||||
hidden_states = hidden_states.to(self.lm_head.weight.device)
|
||||
|
||||
lm_logits = self.lm_head(hidden_states)
|
||||
|
@ -187,7 +193,10 @@ class GPT2InferenceModel(GPT2PreTrainedModel):
|
|||
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
|
||||
"""
|
||||
return tuple(
|
||||
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
||||
tuple(
|
||||
past_state.index_select(0, beam_idx.to(past_state.device))
|
||||
for past_state in layer_past
|
||||
)
|
||||
for layer_past in past
|
||||
)
|
||||
|
||||
|
@ -222,8 +231,7 @@ class ConditioningEncoder(nn.Module):
|
|||
class LearnedPositionEmbeddings(nn.Module):
|
||||
def __init__(self, seq_len, model_dim, init=.02):
|
||||
super().__init__()
|
||||
# ml.Embedding
|
||||
self.emb = ml.Embedding(seq_len, model_dim)
|
||||
self.emb = nn.Embedding(seq_len, model_dim)
|
||||
# Initializing this way is standard for GPT-2
|
||||
self.emb.weight.data.normal_(mean=0.0, std=init)
|
||||
|
||||
|
@ -232,7 +240,7 @@ class LearnedPositionEmbeddings(nn.Module):
|
|||
return self.emb(torch.arange(0, sl, device=x.device))
|
||||
|
||||
def get_fixed_embedding(self, ind, dev):
|
||||
return self.emb(torch.arange(0, ind, device=dev))[ind-1:ind]
|
||||
return self.emb(torch.tensor([ind], device=dev)).unsqueeze(0)
|
||||
|
||||
|
||||
def build_hf_gpt_transformer(layers, model_dim, heads, max_mel_seq_len, max_text_seq_len, checkpointing):
|
||||
|
@ -283,9 +291,9 @@ class MelEncoder(nn.Module):
|
|||
|
||||
|
||||
class UnifiedVoice(nn.Module):
|
||||
def __init__(self, layers=8, model_dim=512, heads=8, max_text_tokens=120, max_prompt_tokens=2, max_mel_tokens=250, max_conditioning_inputs=1,
|
||||
def __init__(self, layers=8, model_dim=512, heads=8, max_text_tokens=120, max_mel_tokens=250, max_conditioning_inputs=1,
|
||||
mel_length_compression=1024, number_text_tokens=256,
|
||||
start_text_token=None, stop_text_token=0, number_mel_codes=8194, start_mel_token=8192,
|
||||
start_text_token=None, number_mel_codes=8194, start_mel_token=8192,
|
||||
stop_mel_token=8193, train_solo_embeddings=False, use_mel_codes_as_input=True,
|
||||
checkpointing=True, types=1):
|
||||
"""
|
||||
|
@ -295,7 +303,6 @@ class UnifiedVoice(nn.Module):
|
|||
heads: Number of transformer heads. Must be divisible by model_dim. Recommend model_dim//64
|
||||
max_text_tokens: Maximum number of text tokens that will be encountered by model.
|
||||
max_mel_tokens: Maximum number of MEL tokens that will be encountered by model.
|
||||
max_prompt_tokens: compat set to 2, 70 for XTTS
|
||||
max_conditioning_inputs: Maximum number of conditioning inputs provided to the model. If (1), conditioning input can be of format (b,80,s), otherwise (b,n,80,s).
|
||||
mel_length_compression: The factor between <number_input_samples> and <mel_tokens>. Used to compute MEL code padding given wav input length.
|
||||
number_text_tokens:
|
||||
|
@ -312,7 +319,7 @@ class UnifiedVoice(nn.Module):
|
|||
|
||||
self.number_text_tokens = number_text_tokens
|
||||
self.start_text_token = number_text_tokens * types if start_text_token is None else start_text_token
|
||||
self.stop_text_token = stop_text_token
|
||||
self.stop_text_token = 0
|
||||
self.number_mel_codes = number_mel_codes
|
||||
self.start_mel_token = start_mel_token
|
||||
self.stop_mel_token = stop_mel_token
|
||||
|
@ -320,16 +327,13 @@ class UnifiedVoice(nn.Module):
|
|||
self.heads = heads
|
||||
self.max_mel_tokens = max_mel_tokens
|
||||
self.max_text_tokens = max_text_tokens
|
||||
self.max_prompt_tokens = max_prompt_tokens
|
||||
self.model_dim = model_dim
|
||||
self.max_conditioning_inputs = max_conditioning_inputs
|
||||
self.mel_length_compression = mel_length_compression
|
||||
self.conditioning_encoder = ConditioningEncoder(80, model_dim, num_attn_heads=heads)
|
||||
# ml.Embedding
|
||||
self.text_embedding = ml.Embedding(self.number_text_tokens*types+1, model_dim)
|
||||
self.text_embedding = nn.Embedding(self.number_text_tokens*types+1, model_dim)
|
||||
if use_mel_codes_as_input:
|
||||
# ml.Embedding
|
||||
self.mel_embedding = ml.Embedding(self.number_mel_codes, model_dim)
|
||||
self.mel_embedding = nn.Embedding(self.number_mel_codes, model_dim)
|
||||
else:
|
||||
self.mel_embedding = MelEncoder(model_dim, resblocks_per_reduction=1)
|
||||
self.gpt, self.mel_pos_embedding, self.text_pos_embedding, self.mel_layer_pos_embedding, self.text_layer_pos_embedding = \
|
||||
|
@ -342,10 +346,8 @@ class UnifiedVoice(nn.Module):
|
|||
self.text_solo_embedding = 0
|
||||
|
||||
self.final_norm = nn.LayerNorm(model_dim)
|
||||
# nn.Linear
|
||||
self.text_head = ml.Linear(model_dim, self.number_text_tokens*types+1)
|
||||
# nn.Linear
|
||||
self.mel_head = ml.Linear(model_dim, self.number_mel_codes)
|
||||
self.text_head = nn.Linear(model_dim, self.number_text_tokens*types+1)
|
||||
self.mel_head = nn.Linear(model_dim, self.number_mel_codes)
|
||||
|
||||
# Initialize the embeddings per the GPT-2 scheme
|
||||
embeddings = [self.text_embedding]
|
||||
|
@ -353,20 +355,35 @@ class UnifiedVoice(nn.Module):
|
|||
embeddings.append(self.mel_embedding)
|
||||
for module in embeddings:
|
||||
module.weight.data.normal_(mean=0.0, std=.02)
|
||||
|
||||
def post_init_gpt2_config(self, use_deepspeed=False, kv_cache=False):
|
||||
seq_length = self.max_mel_tokens + self.max_text_tokens + self.max_prompt_tokens
|
||||
gpt_config = GPT2Config(vocab_size=self.max_mel_tokens,
|
||||
n_positions=seq_length,
|
||||
n_ctx=seq_length,
|
||||
n_embd=self.model_dim,
|
||||
n_layer=self.layers,
|
||||
n_head=self.heads,
|
||||
gradient_checkpointing=False,
|
||||
use_cache=True)
|
||||
self.inference_model = GPT2InferenceModel(gpt_config, self.gpt, self.mel_pos_embedding, self.mel_embedding, self.final_norm, self.mel_head, kv_cache=kv_cache)
|
||||
#print(f'use_deepspeed autoregressive_debug {use_deepspeed}')
|
||||
if use_deepspeed and torch.cuda.is_available():
|
||||
def post_init_gpt2_config(self, use_deepspeed=False, kv_cache=False, half=False):
|
||||
seq_length = self.max_mel_tokens + self.max_text_tokens + 2
|
||||
gpt_config = GPT2Config(
|
||||
vocab_size=self.max_mel_tokens,
|
||||
n_positions=seq_length,
|
||||
n_ctx=seq_length,
|
||||
n_embd=self.model_dim,
|
||||
n_layer=self.layers,
|
||||
n_head=self.heads,
|
||||
gradient_checkpointing=False,
|
||||
use_cache=True,
|
||||
)
|
||||
self.inference_model = GPT2InferenceModel(
|
||||
gpt_config,
|
||||
self.gpt,
|
||||
self.mel_pos_embedding,
|
||||
self.mel_embedding,
|
||||
self.final_norm,
|
||||
self.mel_head,
|
||||
kv_cache=kv_cache,
|
||||
)
|
||||
if use_deepspeed and half and torch.cuda.is_available():
|
||||
import deepspeed
|
||||
self.ds_engine = deepspeed.init_inference(model=self.inference_model,
|
||||
mp_size=1,
|
||||
replace_with_kernel_inject=True,
|
||||
dtype=torch.float16)
|
||||
self.inference_model = self.ds_engine.module.eval()
|
||||
elif use_deepspeed and torch.cuda.is_available():
|
||||
import deepspeed
|
||||
self.ds_engine = deepspeed.init_inference(model=self.inference_model,
|
||||
mp_size=1,
|
||||
|
@ -375,9 +392,9 @@ class UnifiedVoice(nn.Module):
|
|||
self.inference_model = self.ds_engine.module.eval()
|
||||
else:
|
||||
self.inference_model = self.inference_model.eval()
|
||||
|
||||
self.gpt.wte = self.mel_embedding
|
||||
|
||||
# self.inference_model = PrunedGPT2InferenceModel(gpt_config, self.gpt, self.mel_pos_embedding, self.mel_embedding, self.final_norm, self.mel_head)
|
||||
self.gpt.wte = self.mel_embedding
|
||||
def build_aligned_inputs_and_targets(self, input, start_token, stop_token):
|
||||
inp = F.pad(input, (1,0), value=start_token)
|
||||
tar = F.pad(input, (0,1), value=stop_token)
|
||||
|
@ -493,16 +510,33 @@ class UnifiedVoice(nn.Module):
|
|||
loss_text = F.cross_entropy(text_logits, text_targets.long())
|
||||
loss_mel = F.cross_entropy(mel_logits, mel_targets.long())
|
||||
return loss_text.mean(), loss_mel.mean(), mel_logits
|
||||
|
||||
def compute_embeddings(
|
||||
self,
|
||||
cond_latents,
|
||||
text_inputs,
|
||||
):
|
||||
text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token)
|
||||
text_inputs = F.pad(text_inputs, (1, 0), value=self.start_text_token)
|
||||
emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs)
|
||||
conds = cond_latents.unsqueeze(1)
|
||||
emb = torch.cat([conds, emb], dim=1)
|
||||
self.inference_model.store_mel_emb(emb)
|
||||
gpt_inputs = torch.full(
|
||||
(
|
||||
emb.shape[0],
|
||||
emb.shape[1] + 1, # +1 for the start_mel_token
|
||||
),
|
||||
fill_value=1,
|
||||
dtype=torch.long,
|
||||
device=text_inputs.device,
|
||||
)
|
||||
gpt_inputs[:, -1] = self.start_mel_token
|
||||
return gpt_inputs
|
||||
def inference_speech(self, speech_conditioning_latent, text_inputs, input_tokens=None, num_return_sequences=1,
|
||||
max_generate_length=None, typical_sampling=False, typical_mass=.9, **hf_generate_kwargs):
|
||||
seq_length = self.max_mel_tokens + self.max_text_tokens + self.max_prompt_tokens
|
||||
if not hasattr(self, 'inference_model'):
|
||||
self.post_init_gpt2_config(kv_cache=self.kv_cache)
|
||||
|
||||
max_generate_length=None, typical_sampling=False, typical_mass=.9, **hf_generate_kwargs):
|
||||
|
||||
text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token)
|
||||
text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token)
|
||||
text_inputs, _ = self.build_aligned_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token)
|
||||
text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs)
|
||||
|
||||
conds = speech_conditioning_latent.unsqueeze(1)
|
||||
|
@ -528,7 +562,16 @@ class UnifiedVoice(nn.Module):
|
|||
num_return_sequences=num_return_sequences, **hf_generate_kwargs)
|
||||
return gen[:, trunc_index:]
|
||||
|
||||
|
||||
def get_generator(self, fake_inputs, **hf_generate_kwargs):
|
||||
return self.inference_model.generate_stream(
|
||||
fake_inputs,
|
||||
bos_token_id=self.start_mel_token,
|
||||
pad_token_id=self.stop_mel_token,
|
||||
eos_token_id=self.stop_mel_token,
|
||||
max_length=500,
|
||||
do_stream=True,
|
||||
**hf_generate_kwargs,
|
||||
)
|
||||
if __name__ == '__main__':
|
||||
gpt = UnifiedVoice(model_dim=256, heads=4, train_solo_embeddings=True, use_mel_codes_as_input=True, max_conditioning_inputs=4)
|
||||
l = gpt(torch.randn(2, 3, 80, 800),
|
||||
|
@ -536,4 +579,4 @@ if __name__ == '__main__':
|
|||
torch.tensor([32, 120]),
|
||||
torch.randint(high=8192, size=(2,250)),
|
||||
torch.tensor([250*256,195*256]))
|
||||
gpt.text_forward(torch.randn(2,80,800), torch.randint(high=50, size=(2,80)), torch.tensor([32, 80]))
|
||||
gpt.text_forward(torch.randn(2,80,800), torch.randint(high=50, size=(2,80)), torch.tensor([32, 80]))
|
||||
|
|
303
tortoise/models/hifigan_decoder.py
Normal file
303
tortoise/models/hifigan_decoder.py
Normal file
|
@ -0,0 +1,303 @@
|
|||
# adopted from https://github.com/jik876/hifi-gan/blob/master/models.py
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import Conv1d, ConvTranspose1d
|
||||
from torch.nn import functional as F
|
||||
from torch.nn.utils import remove_weight_norm, weight_norm
|
||||
|
||||
LRELU_SLOPE = 0.1
|
||||
|
||||
|
||||
def get_padding(k, d):
|
||||
return int((k * d - d) / 2)
|
||||
|
||||
|
||||
class ResBlock1(torch.nn.Module):
|
||||
"""Residual Block Type 1. It has 3 convolutional layers in each convolutional block.
|
||||
|
||||
Network::
|
||||
|
||||
x -> lrelu -> conv1_1 -> conv1_2 -> conv1_3 -> z -> lrelu -> conv2_1 -> conv2_2 -> conv2_3 -> o -> + -> o
|
||||
|--------------------------------------------------------------------------------------------------|
|
||||
|
||||
|
||||
Args:
|
||||
channels (int): number of hidden channels for the convolutional layers.
|
||||
kernel_size (int): size of the convolution filter in each layer.
|
||||
dilations (list): list of dilation value for each conv layer in a block.
|
||||
"""
|
||||
|
||||
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
||||
super().__init__()
|
||||
self.convs1 = nn.ModuleList(
|
||||
[
|
||||
weight_norm(
|
||||
Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=dilation[0],
|
||||
padding=get_padding(kernel_size, dilation[0]),
|
||||
)
|
||||
),
|
||||
weight_norm(
|
||||
Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=dilation[1],
|
||||
padding=get_padding(kernel_size, dilation[1]),
|
||||
)
|
||||
),
|
||||
weight_norm(
|
||||
Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=dilation[2],
|
||||
padding=get_padding(kernel_size, dilation[2]),
|
||||
)
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
self.convs2 = nn.ModuleList(
|
||||
[
|
||||
weight_norm(
|
||||
Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))
|
||||
),
|
||||
weight_norm(
|
||||
Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))
|
||||
),
|
||||
weight_norm(
|
||||
Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Args:
|
||||
x (Tensor): input tensor.
|
||||
Returns:
|
||||
Tensor: output tensor.
|
||||
Shapes:
|
||||
x: [B, C, T]
|
||||
"""
|
||||
for c1, c2 in zip(self.convs1, self.convs2):
|
||||
xt = F.leaky_relu(x, LRELU_SLOPE)
|
||||
xt = c1(xt)
|
||||
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
||||
xt = c2(xt)
|
||||
x = xt + x
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for l in self.convs1:
|
||||
remove_weight_norm(l)
|
||||
for l in self.convs2:
|
||||
remove_weight_norm(l)
|
||||
|
||||
|
||||
class ResBlock2(torch.nn.Module):
|
||||
"""Residual Block Type 2. It has 1 convolutional layers in each convolutional block.
|
||||
|
||||
Network::
|
||||
|
||||
x -> lrelu -> conv1-> -> z -> lrelu -> conv2-> o -> + -> o
|
||||
|---------------------------------------------------|
|
||||
|
||||
|
||||
Args:
|
||||
channels (int): number of hidden channels for the convolutional layers.
|
||||
kernel_size (int): size of the convolution filter in each layer.
|
||||
dilations (list): list of dilation value for each conv layer in a block.
|
||||
"""
|
||||
|
||||
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
||||
super().__init__()
|
||||
self.convs = nn.ModuleList(
|
||||
[
|
||||
weight_norm(
|
||||
Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=dilation[0],
|
||||
padding=get_padding(kernel_size, dilation[0]),
|
||||
)
|
||||
),
|
||||
weight_norm(
|
||||
Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=dilation[1],
|
||||
padding=get_padding(kernel_size, dilation[1]),
|
||||
)
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
for c in self.convs:
|
||||
xt = F.leaky_relu(x, LRELU_SLOPE)
|
||||
xt = c(xt)
|
||||
x = xt + x
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for l in self.convs:
|
||||
remove_weight_norm(l)
|
||||
|
||||
|
||||
class HifiganGenerator(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
resblock_type,
|
||||
resblock_dilation_sizes,
|
||||
resblock_kernel_sizes,
|
||||
upsample_kernel_sizes,
|
||||
upsample_initial_channel,
|
||||
upsample_factors,
|
||||
inference_padding=5,
|
||||
cond_channels=0,
|
||||
conv_pre_weight_norm=True,
|
||||
conv_post_weight_norm=True,
|
||||
conv_post_bias=True,
|
||||
):
|
||||
r"""HiFiGAN Generator with Multi-Receptive Field Fusion (MRF)
|
||||
|
||||
Network:
|
||||
x -> lrelu -> upsampling_layer -> resblock1_k1x1 -> z1 -> + -> z_sum / #resblocks -> lrelu -> conv_post_7x1 -> tanh -> o
|
||||
.. -> zI ---|
|
||||
resblockN_kNx1 -> zN ---'
|
||||
|
||||
Args:
|
||||
in_channels (int): number of input tensor channels.
|
||||
out_channels (int): number of output tensor channels.
|
||||
resblock_type (str): type of the `ResBlock`. '1' or '2'.
|
||||
resblock_dilation_sizes (List[List[int]]): list of dilation values in each layer of a `ResBlock`.
|
||||
resblock_kernel_sizes (List[int]): list of kernel sizes for each `ResBlock`.
|
||||
upsample_kernel_sizes (List[int]): list of kernel sizes for each transposed convolution.
|
||||
upsample_initial_channel (int): number of channels for the first upsampling layer. This is divided by 2
|
||||
for each consecutive upsampling layer.
|
||||
upsample_factors (List[int]): upsampling factors (stride) for each upsampling layer.
|
||||
inference_padding (int): constant padding applied to the input at inference time. Defaults to 5.
|
||||
"""
|
||||
super().__init__()
|
||||
self.inference_padding = inference_padding
|
||||
self.num_kernels = len(resblock_kernel_sizes)
|
||||
self.num_upsamples = len(upsample_factors)
|
||||
# initial upsampling layers
|
||||
self.conv_pre = weight_norm(Conv1d(in_channels, upsample_initial_channel, 7, 1, padding=3))
|
||||
resblock = ResBlock1 if resblock_type == "1" else ResBlock2
|
||||
# upsampling layers
|
||||
self.ups = nn.ModuleList()
|
||||
for i, (u, k) in enumerate(zip(upsample_factors, upsample_kernel_sizes)):
|
||||
self.ups.append(
|
||||
weight_norm(
|
||||
ConvTranspose1d(
|
||||
upsample_initial_channel // (2**i),
|
||||
upsample_initial_channel // (2 ** (i + 1)),
|
||||
k,
|
||||
u,
|
||||
padding=(k - u) // 2,
|
||||
)
|
||||
)
|
||||
)
|
||||
# MRF blocks
|
||||
self.resblocks = nn.ModuleList()
|
||||
for i in range(len(self.ups)):
|
||||
ch = upsample_initial_channel // (2 ** (i + 1))
|
||||
for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
||||
self.resblocks.append(resblock(ch, k, d))
|
||||
# post convolution layer
|
||||
self.conv_post = weight_norm(Conv1d(ch, out_channels, 7, 1, padding=3, bias=conv_post_bias))
|
||||
if cond_channels > 0:
|
||||
self.cond_layer = nn.Conv1d(cond_channels, upsample_initial_channel, 1)
|
||||
|
||||
if not conv_pre_weight_norm:
|
||||
remove_weight_norm(self.conv_pre)
|
||||
|
||||
if not conv_post_weight_norm:
|
||||
remove_weight_norm(self.conv_post)
|
||||
|
||||
self.device = torch.device('cuda' if torch.cuda.is_available() else'cpu')
|
||||
if torch.backends.mps.is_available():
|
||||
self.device = torch.device('mps')
|
||||
|
||||
def forward(self, x, g=None):
|
||||
"""
|
||||
Args:
|
||||
x (Tensor): feature input tensor.
|
||||
g (Tensor): global conditioning input tensor.
|
||||
|
||||
Returns:
|
||||
Tensor: output waveform.
|
||||
|
||||
Shapes:
|
||||
x: [B, C, T]
|
||||
Tensor: [B, 1, T]
|
||||
"""
|
||||
o = self.conv_pre(x)
|
||||
if hasattr(self, "cond_layer"):
|
||||
o = o + self.cond_layer(g)
|
||||
for i in range(self.num_upsamples):
|
||||
o = F.leaky_relu(o, LRELU_SLOPE)
|
||||
o = self.ups[i](o)
|
||||
z_sum = None
|
||||
for j in range(self.num_kernels):
|
||||
if z_sum is None:
|
||||
z_sum = self.resblocks[i * self.num_kernels + j](o)
|
||||
else:
|
||||
z_sum += self.resblocks[i * self.num_kernels + j](o)
|
||||
o = z_sum / self.num_kernels
|
||||
o = F.leaky_relu(o)
|
||||
o = self.conv_post(o)
|
||||
o = torch.tanh(o)
|
||||
return o
|
||||
|
||||
@torch.no_grad()
|
||||
def inference(self, c, g=None):
|
||||
"""
|
||||
Args:
|
||||
x (Tensor): conditioning input tensor.
|
||||
|
||||
Returns:
|
||||
Tensor: output waveform.
|
||||
|
||||
Shapes:
|
||||
x: [B, C, T]
|
||||
Tensor: [B, 1, T]
|
||||
"""
|
||||
# c = c.to(self.conv_pre.weight.device)
|
||||
# c = torch.nn.functional.pad(c, (self.inference_padding, self.inference_padding), "replicate")
|
||||
up_1 = torch.nn.functional.interpolate(
|
||||
c.transpose(1,2),
|
||||
scale_factor=[1024 / 256],
|
||||
mode="linear",
|
||||
)
|
||||
up_2 = torch.nn.functional.interpolate(
|
||||
up_1,
|
||||
scale_factor=[24000 / 22050],
|
||||
mode="linear",
|
||||
)
|
||||
g = g.unsqueeze(0)
|
||||
return self.forward(up_2.to(self.device), g.transpose(1,2))
|
||||
|
||||
def remove_weight_norm(self):
|
||||
print("Removing weight norm...")
|
||||
for l in self.ups:
|
||||
remove_weight_norm(l)
|
||||
for l in self.resblocks:
|
||||
l.remove_weight_norm()
|
||||
remove_weight_norm(self.conv_pre)
|
||||
remove_weight_norm(self.conv_post)
|
1057
tortoise/models/stream_generator.py
Normal file
1057
tortoise/models/stream_generator.py
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user