integrate new autoregressive model and fix new diffusion bug
This commit is contained in:
parent
9043dde3f9
commit
33e4bc7907
7
api.py
7
api.py
|
@ -117,13 +117,14 @@ def do_spectrogram_diffusion(diffusion_model, diffuser, mel_codes, conditioning_
|
||||||
cond_mels.append(cond_mel)
|
cond_mels.append(cond_mel)
|
||||||
cond_mels = torch.stack(cond_mels, dim=1)
|
cond_mels = torch.stack(cond_mels, dim=1)
|
||||||
|
|
||||||
output_shape = (mel_codes.shape[0], 100, mel_codes.shape[-1]*4)
|
output_seq_len = mel_codes.shape[-1]*4*24000//22050 # This diffusion model converts from 22kHz spectrogram codes to a 24kHz spectrogram signal.
|
||||||
precomputed_embeddings = diffusion_model.timestep_independent(mel_codes, cond_mels, False)
|
output_shape = (mel_codes.shape[0], 100, output_seq_len)
|
||||||
|
precomputed_embeddings = diffusion_model.timestep_independent(mel_codes, cond_mels, output_seq_len, False)
|
||||||
|
|
||||||
noise = torch.randn(output_shape, device=mel_codes.device) * temperature
|
noise = torch.randn(output_shape, device=mel_codes.device) * temperature
|
||||||
mel = diffuser.p_sample_loop(diffusion_model, output_shape, noise=noise,
|
mel = diffuser.p_sample_loop(diffusion_model, output_shape, noise=noise,
|
||||||
model_kwargs={'precomputed_aligned_embeddings': precomputed_embeddings})
|
model_kwargs={'precomputed_aligned_embeddings': precomputed_embeddings})
|
||||||
return denormalize_tacotron_mel(mel)[:,:,:mel_codes.shape[-1]*4]
|
return denormalize_tacotron_mel(mel)[:,:,:output_seq_len]
|
||||||
|
|
||||||
|
|
||||||
class TextToSpeech:
|
class TextToSpeech:
|
||||||
|
|
245
api_new_autoregressive.py
Normal file
245
api_new_autoregressive.py
Normal file
|
@ -0,0 +1,245 @@
|
||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
import random
|
||||||
|
from urllib import request
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn.functional as F
|
||||||
|
import torchaudio
|
||||||
|
import progressbar
|
||||||
|
import ocotillo
|
||||||
|
|
||||||
|
from models.diffusion_decoder import DiffusionTts
|
||||||
|
from models.autoregressive import UnifiedVoice
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
from models.arch_util import TorchMelSpectrogram
|
||||||
|
from models.new_autoregressive import AutoregressiveCodegen
|
||||||
|
from models.text_voice_clip import VoiceCLIP
|
||||||
|
from models.vocoder import UnivNetGenerator
|
||||||
|
from utils.audio import load_audio, wav_to_univnet_mel, denormalize_tacotron_mel
|
||||||
|
from utils.diffusion import SpacedDiffusion, space_timesteps, get_named_beta_schedule
|
||||||
|
from utils.tokenizer import VoiceBpeTokenizer, lev_distance
|
||||||
|
|
||||||
|
|
||||||
|
pbar = None
|
||||||
|
def download_models():
|
||||||
|
MODELS = {
|
||||||
|
'clip.pth': 'https://huggingface.co/jbetker/tortoise-tts-clip/resolve/main/pytorch-model.bin',
|
||||||
|
'diffusion.pth': 'https://huggingface.co/jbetker/tortoise-tts-diffusion-v1/resolve/main/pytorch-model.bin',
|
||||||
|
'autoregressive.pth': 'https://huggingface.co/jbetker/tortoise-tts-autoregressive/resolve/main/pytorch-model.bin'
|
||||||
|
}
|
||||||
|
os.makedirs('.models', exist_ok=True)
|
||||||
|
def show_progress(block_num, block_size, total_size):
|
||||||
|
global pbar
|
||||||
|
if pbar is None:
|
||||||
|
pbar = progressbar.ProgressBar(maxval=total_size)
|
||||||
|
pbar.start()
|
||||||
|
|
||||||
|
downloaded = block_num * block_size
|
||||||
|
if downloaded < total_size:
|
||||||
|
pbar.update(downloaded)
|
||||||
|
else:
|
||||||
|
pbar.finish()
|
||||||
|
pbar = None
|
||||||
|
for model_name, url in MODELS.items():
|
||||||
|
if os.path.exists(f'.models/{model_name}'):
|
||||||
|
continue
|
||||||
|
print(f'Downloading {model_name} from {url}...')
|
||||||
|
request.urlretrieve(url, f'.models/{model_name}', show_progress)
|
||||||
|
print('Done.')
|
||||||
|
|
||||||
|
|
||||||
|
def pad_or_truncate(t, length):
|
||||||
|
if t.shape[-1] == length:
|
||||||
|
return t
|
||||||
|
elif t.shape[-1] < length:
|
||||||
|
return F.pad(t, (0, length-t.shape[-1]))
|
||||||
|
else:
|
||||||
|
return t[..., :length]
|
||||||
|
|
||||||
|
|
||||||
|
def load_discrete_vocoder_diffuser(trained_diffusion_steps=4000, desired_diffusion_steps=200, cond_free=True, cond_free_k=1):
|
||||||
|
"""
|
||||||
|
Helper function to load a GaussianDiffusion instance configured for use as a vocoder.
|
||||||
|
"""
|
||||||
|
return SpacedDiffusion(use_timesteps=space_timesteps(trained_diffusion_steps, [desired_diffusion_steps]), model_mean_type='epsilon',
|
||||||
|
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', trained_diffusion_steps),
|
||||||
|
conditioning_free=cond_free, conditioning_free_k=cond_free_k)
|
||||||
|
|
||||||
|
|
||||||
|
def load_conditioning(clip, cond_length=132300):
|
||||||
|
gap = clip.shape[-1] - cond_length
|
||||||
|
if gap < 0:
|
||||||
|
clip = F.pad(clip, pad=(0, abs(gap)))
|
||||||
|
elif gap > 0:
|
||||||
|
rand_start = random.randint(0, gap)
|
||||||
|
clip = clip[:, rand_start:rand_start + cond_length]
|
||||||
|
mel_clip = TorchMelSpectrogram()(clip.unsqueeze(0)).squeeze(0)
|
||||||
|
return mel_clip.unsqueeze(0).cuda()
|
||||||
|
|
||||||
|
|
||||||
|
def fix_autoregressive_output(codes, stop_token):
|
||||||
|
"""
|
||||||
|
This function performs some padding on coded audio that fixes a mismatch issue between what the diffusion model was
|
||||||
|
trained on and what the autoregressive code generator creates (which has no padding or end).
|
||||||
|
This is highly specific to the DVAE being used, so this particular coding will not necessarily work if used with
|
||||||
|
a different DVAE. This can be inferred by feeding a audio clip padded with lots of zeros on the end through the DVAE
|
||||||
|
and copying out the last few codes.
|
||||||
|
|
||||||
|
Failing to do this padding will produce speech with a harsh end that sounds like "BLAH" or similar.
|
||||||
|
"""
|
||||||
|
# Strip off the autoregressive stop token and add padding.
|
||||||
|
stop_token_indices = (codes == stop_token).nonzero()
|
||||||
|
if len(stop_token_indices) == 0:
|
||||||
|
print("No stop tokens found, enjoy that output of yours!")
|
||||||
|
return codes
|
||||||
|
else:
|
||||||
|
codes[stop_token_indices] = 83
|
||||||
|
stm = stop_token_indices.min().item()
|
||||||
|
codes[stm:] = 83
|
||||||
|
if stm - 3 < codes.shape[0]:
|
||||||
|
codes[-3] = 45
|
||||||
|
codes[-2] = 45
|
||||||
|
codes[-1] = 248
|
||||||
|
|
||||||
|
return codes
|
||||||
|
|
||||||
|
|
||||||
|
def do_spectrogram_diffusion(diffusion_model, diffuser, mel_codes, conditioning_samples, temperature=1):
|
||||||
|
"""
|
||||||
|
Uses the specified diffusion model to convert discrete codes into a spectrogram.
|
||||||
|
"""
|
||||||
|
with torch.no_grad():
|
||||||
|
cond_mels = []
|
||||||
|
for sample in conditioning_samples:
|
||||||
|
sample = pad_or_truncate(sample, 102400)
|
||||||
|
cond_mel = wav_to_univnet_mel(sample.to(mel_codes.device), do_normalization=False)
|
||||||
|
cond_mels.append(cond_mel)
|
||||||
|
cond_mels = torch.stack(cond_mels, dim=1)
|
||||||
|
|
||||||
|
output_seq_len = mel_codes.shape[-1]*4*24000//22050 # This diffusion model converts from 22kHz spectrogram codes to a 24kHz spectrogram signal.
|
||||||
|
output_shape = (mel_codes.shape[0], 100, output_seq_len)
|
||||||
|
precomputed_embeddings = diffusion_model.timestep_independent(mel_codes, cond_mels, output_seq_len, False)
|
||||||
|
|
||||||
|
noise = torch.randn(output_shape, device=mel_codes.device) * temperature
|
||||||
|
mel = diffuser.p_sample_loop(diffusion_model, output_shape, noise=noise,
|
||||||
|
model_kwargs={'precomputed_aligned_embeddings': precomputed_embeddings})
|
||||||
|
return denormalize_tacotron_mel(mel)[:,:,:output_seq_len]
|
||||||
|
|
||||||
|
|
||||||
|
class TextToSpeech:
|
||||||
|
def __init__(self, autoregressive_batch_size=32):
|
||||||
|
self.autoregressive_batch_size = autoregressive_batch_size
|
||||||
|
self.tokenizer = VoiceBpeTokenizer()
|
||||||
|
download_models()
|
||||||
|
|
||||||
|
self.autoregressive = AutoregressiveCodegen(512, 12).cpu().eval()
|
||||||
|
self.autoregressive.load_state_dict(torch.load('D:\\dlas\\experiments\\train_autoregressive_codegen\\models\\23000_codegen_ema.pth'))
|
||||||
|
|
||||||
|
self.clip = VoiceCLIP(dim_text=512, dim_speech=512, dim_latent=512, num_text_tokens=256, text_enc_depth=12,
|
||||||
|
text_seq_len=350, text_heads=8,
|
||||||
|
num_speech_tokens=8192, speech_enc_depth=12, speech_heads=8, speech_seq_len=430,
|
||||||
|
use_xformers=True).cpu().eval()
|
||||||
|
self.clip.load_state_dict(torch.load('.models/clip.pth'))
|
||||||
|
|
||||||
|
self.diffusion = DiffusionTts(model_channels=1024, num_layers=10, in_channels=100, out_channels=200,
|
||||||
|
in_latent_channels=1024, in_tokens=8193, dropout=0, use_fp16=False, num_heads=16,
|
||||||
|
layer_drop=0, unconditioned_percentage=0).cpu().eval()
|
||||||
|
self.diffusion.load_state_dict(torch.load('.models/diffusion.pth'))
|
||||||
|
|
||||||
|
self.vocoder = UnivNetGenerator().cpu()
|
||||||
|
self.vocoder.load_state_dict(torch.load('.models/vocoder.pth')['model_g'])
|
||||||
|
self.vocoder.eval(inference=True)
|
||||||
|
|
||||||
|
def tts(self, text, voice_samples, k=1,
|
||||||
|
# autoregressive generation parameters follow
|
||||||
|
num_autoregressive_samples=512, temperature=.5, length_penalty=2, repetition_penalty=2.0, top_p=.5,
|
||||||
|
typical_sampling=False, typical_mass=.9,
|
||||||
|
# diffusion generation parameters follow
|
||||||
|
diffusion_iterations=100, cond_free=True, cond_free_k=2, diffusion_temperature=.7,):
|
||||||
|
text = torch.IntTensor(self.tokenizer.encode(text)).unsqueeze(0).cuda()
|
||||||
|
text = F.pad(text, (0, 1)) # This may not be necessary.
|
||||||
|
|
||||||
|
conds = []
|
||||||
|
if not isinstance(voice_samples, list):
|
||||||
|
voice_samples = [voice_samples]
|
||||||
|
for vs in voice_samples:
|
||||||
|
conds.append(load_conditioning(vs))
|
||||||
|
conds = torch.stack(conds, dim=1)
|
||||||
|
|
||||||
|
diffuser = load_discrete_vocoder_diffuser(desired_diffusion_steps=diffusion_iterations, cond_free=cond_free, cond_free_k=cond_free_k)
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
samples = []
|
||||||
|
num_batches = num_autoregressive_samples // self.autoregressive_batch_size
|
||||||
|
stop_mel_token = self.autoregressive.STOP_TOKEN
|
||||||
|
self.autoregressive = self.autoregressive.cuda()
|
||||||
|
for _ in tqdm(range(num_batches)):
|
||||||
|
codes = self.autoregressive.generate(conds, text,
|
||||||
|
do_sample=True,
|
||||||
|
top_p=top_p,
|
||||||
|
temperature=temperature,
|
||||||
|
num_return_sequences=self.autoregressive_batch_size,
|
||||||
|
length_penalty=length_penalty,
|
||||||
|
repetition_penalty=repetition_penalty,
|
||||||
|
typical_sampling=typical_sampling,
|
||||||
|
typical_mass=typical_mass)
|
||||||
|
padding_needed = 250 - codes.shape[1]
|
||||||
|
codes = F.pad(codes, (0, padding_needed), value=stop_mel_token)
|
||||||
|
samples.append(codes)
|
||||||
|
#self.autoregressive = self.autoregressive.cpu()
|
||||||
|
|
||||||
|
clip_results = []
|
||||||
|
self.clip = self.clip.cuda()
|
||||||
|
for batch in samples:
|
||||||
|
for i in range(batch.shape[0]):
|
||||||
|
batch[i] = fix_autoregressive_output(batch[i], stop_mel_token)
|
||||||
|
bad_toks = batch >= 8192
|
||||||
|
batch = batch * bad_toks.logical_not()
|
||||||
|
clip_results.append(self.clip(text.repeat(batch.shape[0], 1), batch, return_loss=False))
|
||||||
|
clip_results = torch.cat(clip_results, dim=0)
|
||||||
|
samples = torch.cat(samples, dim=0)
|
||||||
|
best_results = samples[torch.topk(clip_results, k=k).indices]
|
||||||
|
self.clip = self.clip.cpu()
|
||||||
|
del samples
|
||||||
|
|
||||||
|
print("Performing vocoding..")
|
||||||
|
wav_candidates = []
|
||||||
|
self.diffusion = self.diffusion.cuda()
|
||||||
|
self.vocoder = self.vocoder.cuda()
|
||||||
|
for b in range(best_results.shape[0]):
|
||||||
|
code = best_results[b].unsqueeze(0)
|
||||||
|
mel = do_spectrogram_diffusion(self.diffusion, diffuser, code, voice_samples, temperature=diffusion_temperature)
|
||||||
|
wav = self.vocoder.inference(mel)
|
||||||
|
wav_candidates.append(wav.cpu())
|
||||||
|
self.diffusion = self.diffusion.cpu()
|
||||||
|
self.vocoder = self.vocoder.cpu()
|
||||||
|
|
||||||
|
if len(wav_candidates) > 1:
|
||||||
|
return wav_candidates
|
||||||
|
return wav_candidates[0]
|
||||||
|
|
||||||
|
def refine_for_intellibility(self, wav_candidates, corresponding_codes, output_path):
|
||||||
|
"""
|
||||||
|
Further refine the remaining candidates using a ASR model to pick out the ones that are the most understandable.
|
||||||
|
TODO: finish this function
|
||||||
|
:param wav_candidates:
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
transcriber = ocotillo.Transcriber(on_cuda=True)
|
||||||
|
transcriptions = transcriber.transcribe_batch(torch.cat(wav_candidates, dim=0).squeeze(1), 24000)
|
||||||
|
best = 99999999
|
||||||
|
for i, transcription in enumerate(transcriptions):
|
||||||
|
dist = lev_distance(transcription, args.text.lower())
|
||||||
|
if dist < best:
|
||||||
|
best = dist
|
||||||
|
best_codes = corresponding_codes[i].unsqueeze(0)
|
||||||
|
best_wav = wav_candidates[i]
|
||||||
|
del transcriber
|
||||||
|
torchaudio.save(os.path.join(output_path, f'{voice}_poor.wav'), best_wav.squeeze(0).cpu(), 24000)
|
||||||
|
|
||||||
|
# Perform diffusion again with the high-quality diffuser.
|
||||||
|
mel = do_spectrogram_diffusion(diffusion, final_diffuser, best_codes, cond_diffusion, mean=False)
|
||||||
|
wav = vocoder.inference(mel)
|
||||||
|
torchaudio.save(os.path.join(args.output_path, f'{voice}.wav'), wav.squeeze(0).cpu(), 24000)
|
|
@ -5,7 +5,7 @@ import torch
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
import torchaudio
|
import torchaudio
|
||||||
|
|
||||||
from api import TextToSpeech, load_conditioning
|
from api_new_autoregressive import TextToSpeech, load_conditioning
|
||||||
from utils.audio import load_audio
|
from utils.audio import load_audio
|
||||||
from utils.tokenizer import VoiceBpeTokenizer
|
from utils.tokenizer import VoiceBpeTokenizer
|
||||||
|
|
||||||
|
@ -28,7 +28,7 @@ if __name__ == '__main__':
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument('-text', type=str, help='Text to speak.', default="I am a language model that has learned to speak.")
|
parser.add_argument('-text', type=str, help='Text to speak.', default="I am a language model that has learned to speak.")
|
||||||
parser.add_argument('-voice', type=str, help='Use a preset conditioning voice (defined above). Overrides cond_path.', default='dotrice,harris,lescault,otto,atkins,grace,kennard,mol')
|
parser.add_argument('-voice', type=str, help='Use a preset conditioning voice (defined above). Overrides cond_path.', default='dotrice,harris,lescault,otto,atkins,grace,kennard,mol')
|
||||||
parser.add_argument('-num_samples', type=int, help='How many total outputs the autoregressive transformer should produce.', default=512)
|
parser.add_argument('-num_samples', type=int, help='How many total outputs the autoregressive transformer should produce.', default=32)
|
||||||
parser.add_argument('-batch_size', type=int, help='How many samples to process at once in the autoregressive model.', default=16)
|
parser.add_argument('-batch_size', type=int, help='How many samples to process at once in the autoregressive model.', default=16)
|
||||||
parser.add_argument('-num_diffusion_samples', type=int, help='Number of outputs that progress to the diffusion stage.', default=16)
|
parser.add_argument('-num_diffusion_samples', type=int, help='Number of outputs that progress to the diffusion stage.', default=16)
|
||||||
parser.add_argument('-output_path', type=str, help='Where to store outputs.', default='results/')
|
parser.add_argument('-output_path', type=str, help='Where to store outputs.', default='results/')
|
||||||
|
|
|
@ -212,7 +212,7 @@ class DiffusionTts(nn.Module):
|
||||||
}
|
}
|
||||||
return groups
|
return groups
|
||||||
|
|
||||||
def timestep_independent(self, aligned_conditioning, conditioning_input, return_code_pred):
|
def timestep_independent(self, aligned_conditioning, conditioning_input, expected_seq_len, return_code_pred):
|
||||||
# Shuffle aligned_latent to BxCxS format
|
# Shuffle aligned_latent to BxCxS format
|
||||||
if is_latent(aligned_conditioning):
|
if is_latent(aligned_conditioning):
|
||||||
aligned_conditioning = aligned_conditioning.permute(0, 2, 1)
|
aligned_conditioning = aligned_conditioning.permute(0, 2, 1)
|
||||||
|
@ -227,7 +227,7 @@ class DiffusionTts(nn.Module):
|
||||||
cond_emb = conds.mean(dim=-1)
|
cond_emb = conds.mean(dim=-1)
|
||||||
cond_scale, cond_shift = torch.chunk(cond_emb, 2, dim=1)
|
cond_scale, cond_shift = torch.chunk(cond_emb, 2, dim=1)
|
||||||
if is_latent(aligned_conditioning):
|
if is_latent(aligned_conditioning):
|
||||||
code_emb = self.latent_converter(aligned_conditioning)
|
code_emb = self.autoregressive_latent_converter(aligned_conditioning)
|
||||||
else:
|
else:
|
||||||
code_emb = self.code_embedding(aligned_conditioning).permute(0, 2, 1)
|
code_emb = self.code_embedding(aligned_conditioning).permute(0, 2, 1)
|
||||||
code_emb = self.code_converter(code_emb)
|
code_emb = self.code_converter(code_emb)
|
||||||
|
@ -240,7 +240,7 @@ class DiffusionTts(nn.Module):
|
||||||
device=code_emb.device) < self.unconditioned_percentage
|
device=code_emb.device) < self.unconditioned_percentage
|
||||||
code_emb = torch.where(unconditioned_batches, self.unconditioned_embedding.repeat(aligned_conditioning.shape[0], 1, 1),
|
code_emb = torch.where(unconditioned_batches, self.unconditioned_embedding.repeat(aligned_conditioning.shape[0], 1, 1),
|
||||||
code_emb)
|
code_emb)
|
||||||
expanded_code_emb = F.interpolate(code_emb, size=aligned_conditioning.shape[-1]*4, mode='nearest')
|
expanded_code_emb = F.interpolate(code_emb, size=expected_seq_len, mode='nearest')
|
||||||
|
|
||||||
if not return_code_pred:
|
if not return_code_pred:
|
||||||
return expanded_code_emb
|
return expanded_code_emb
|
||||||
|
@ -250,7 +250,6 @@ class DiffusionTts(nn.Module):
|
||||||
mel_pred = mel_pred * unconditioned_batches.logical_not()
|
mel_pred = mel_pred * unconditioned_batches.logical_not()
|
||||||
return expanded_code_emb, mel_pred
|
return expanded_code_emb, mel_pred
|
||||||
|
|
||||||
|
|
||||||
def forward(self, x, timesteps, aligned_conditioning=None, conditioning_input=None, precomputed_aligned_embeddings=None, conditioning_free=False, return_code_pred=False):
|
def forward(self, x, timesteps, aligned_conditioning=None, conditioning_input=None, precomputed_aligned_embeddings=None, conditioning_free=False, return_code_pred=False):
|
||||||
"""
|
"""
|
||||||
Apply the model to an input batch.
|
Apply the model to an input batch.
|
||||||
|
@ -275,11 +274,12 @@ class DiffusionTts(nn.Module):
|
||||||
if precomputed_aligned_embeddings is not None:
|
if precomputed_aligned_embeddings is not None:
|
||||||
code_emb = precomputed_aligned_embeddings
|
code_emb = precomputed_aligned_embeddings
|
||||||
else:
|
else:
|
||||||
code_emb, mel_pred = self.timestep_independent(aligned_conditioning, conditioning_input, True)
|
code_emb, mel_pred = self.timestep_independent(aligned_conditioning, conditioning_input, x.shape[-1], True)
|
||||||
if is_latent(aligned_conditioning):
|
if is_latent(aligned_conditioning):
|
||||||
unused_params.extend(list(self.code_converter.parameters()) + list(self.code_embedding.parameters()))
|
unused_params.extend(list(self.code_converter.parameters()) + list(self.code_embedding.parameters()))
|
||||||
else:
|
else:
|
||||||
unused_params.extend(list(self.latent_converter.parameters()))
|
unused_params.extend(list(self.latent_converter.parameters()))
|
||||||
|
|
||||||
unused_params.append(self.unconditioned_embedding)
|
unused_params.append(self.unconditioned_embedding)
|
||||||
|
|
||||||
time_emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
time_emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
||||||
|
|
293
models/new_autoregressive.py
Normal file
293
models/new_autoregressive.py
Normal file
|
@ -0,0 +1,293 @@
|
||||||
|
import functools
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from transformers import GPT2PreTrainedModel, GPT2Config
|
||||||
|
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
|
||||||
|
from x_transformers import TransformerWrapper, Encoder, Decoder
|
||||||
|
|
||||||
|
from models.arch_util import AttentionBlock
|
||||||
|
|
||||||
|
|
||||||
|
class InferenceModel(GPT2PreTrainedModel):
|
||||||
|
"""
|
||||||
|
Implementation of GPT2PreTrainedModel from transformers, which allows us to use their generation library with
|
||||||
|
this transformer.
|
||||||
|
"""
|
||||||
|
def __init__(self, model):
|
||||||
|
super().__init__(GPT2Config())
|
||||||
|
self.transformer = model
|
||||||
|
self.context = None
|
||||||
|
|
||||||
|
def parallelize(self, device_map=None):
|
||||||
|
# Not implemented.
|
||||||
|
pass
|
||||||
|
|
||||||
|
def deparallelize(self):
|
||||||
|
# Not implemented.
|
||||||
|
pass
|
||||||
|
|
||||||
|
def get_output_embeddings(self):
|
||||||
|
assert False, "Unsupported operation."
|
||||||
|
|
||||||
|
def set_output_embeddings(self, new_embeddings):
|
||||||
|
assert False, "Unsupported operation."
|
||||||
|
|
||||||
|
def store_context(self, context):
|
||||||
|
self.context = context
|
||||||
|
|
||||||
|
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
|
||||||
|
token_type_ids = kwargs.get("token_type_ids", None)
|
||||||
|
# only last token for inputs_ids if past is defined in kwargs
|
||||||
|
if past:
|
||||||
|
input_ids = input_ids[:, -1].unsqueeze(-1)
|
||||||
|
if token_type_ids is not None:
|
||||||
|
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
||||||
|
|
||||||
|
attention_mask = kwargs.get("attention_mask", None)
|
||||||
|
position_ids = kwargs.get("position_ids", None)
|
||||||
|
|
||||||
|
if attention_mask is not None and position_ids is None:
|
||||||
|
# create position_ids on the fly for batch generation
|
||||||
|
position_ids = attention_mask.long().cumsum(-1) - 1
|
||||||
|
position_ids.masked_fill_(attention_mask == 0, 1)
|
||||||
|
if past:
|
||||||
|
position_ids = position_ids[:, -1].unsqueeze(-1)
|
||||||
|
else:
|
||||||
|
position_ids = None
|
||||||
|
return {
|
||||||
|
"input_ids": input_ids,
|
||||||
|
"past_key_values": past,
|
||||||
|
"use_cache": kwargs.get("use_cache"),
|
||||||
|
"position_ids": position_ids,
|
||||||
|
"attention_mask": attention_mask,
|
||||||
|
"token_type_ids": token_type_ids,
|
||||||
|
}
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
input_ids=None,
|
||||||
|
past_key_values=None,
|
||||||
|
attention_mask=None,
|
||||||
|
token_type_ids=None,
|
||||||
|
position_ids=None,
|
||||||
|
head_mask=None,
|
||||||
|
inputs_embeds=None,
|
||||||
|
encoder_hidden_states=None,
|
||||||
|
encoder_attention_mask=None,
|
||||||
|
labels=None,
|
||||||
|
use_cache=None,
|
||||||
|
output_attentions=None,
|
||||||
|
output_hidden_states=None,
|
||||||
|
return_dict=None,
|
||||||
|
):
|
||||||
|
assert self.context is not None
|
||||||
|
assert inputs_embeds is None # Not supported by this inference model.
|
||||||
|
assert labels is None # Training not supported by this inference model.
|
||||||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||||
|
|
||||||
|
hidden_states = self.transformer.decoder(input_ids, context=self.context, return_embeddings=True)
|
||||||
|
logits = self.transformer.decoder.transformer.to_logits(hidden_states)
|
||||||
|
|
||||||
|
if not return_dict:
|
||||||
|
return (logits, )
|
||||||
|
|
||||||
|
return CausalLMOutputWithCrossAttentions(
|
||||||
|
loss=None,
|
||||||
|
logits=logits,
|
||||||
|
past_key_values=None,
|
||||||
|
hidden_states=hidden_states,
|
||||||
|
attentions=None,
|
||||||
|
cross_attentions=None,
|
||||||
|
)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _reorder_cache(past, beam_idx):
|
||||||
|
"""
|
||||||
|
This function is used to re-order the :obj:`past_key_values` cache if
|
||||||
|
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is
|
||||||
|
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
|
||||||
|
"""
|
||||||
|
return tuple(
|
||||||
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
||||||
|
for layer_past in past
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class ResBlock(nn.Module):
|
||||||
|
"""
|
||||||
|
Basic residual convolutional block that uses GroupNorm.
|
||||||
|
"""
|
||||||
|
def __init__(self, chan):
|
||||||
|
super().__init__()
|
||||||
|
self.net = nn.Sequential(
|
||||||
|
nn.Conv1d(chan, chan, kernel_size=3, padding=1),
|
||||||
|
nn.GroupNorm(chan//8, chan),
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Conv1d(chan, chan, kernel_size=3, padding=1),
|
||||||
|
nn.GroupNorm(chan//8, chan)
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return F.relu(self.net(x) + x)
|
||||||
|
|
||||||
|
|
||||||
|
class ConditioningEncoder(nn.Module):
|
||||||
|
def __init__(self,
|
||||||
|
spec_dim,
|
||||||
|
embedding_dim,
|
||||||
|
attn_blocks=6,
|
||||||
|
num_attn_heads=4,
|
||||||
|
do_checkpointing=False):
|
||||||
|
super().__init__()
|
||||||
|
attn = []
|
||||||
|
self.init = nn.Sequential(nn.Conv1d(spec_dim, embedding_dim//4, kernel_size=5, padding=2),
|
||||||
|
nn.Conv1d(embedding_dim//4, embedding_dim//2, kernel_size=3, padding=1, stride=2),
|
||||||
|
ResBlock(embedding_dim//2),
|
||||||
|
nn.Conv1d(embedding_dim//2, embedding_dim, kernel_size=3, padding=1, stride=2))
|
||||||
|
for a in range(attn_blocks):
|
||||||
|
attn.append(AttentionBlock(embedding_dim, num_attn_heads, do_checkpoint=do_checkpointing))
|
||||||
|
self.attn = nn.Sequential(*attn)
|
||||||
|
self.dim = embedding_dim
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
h = self.init(x)
|
||||||
|
h = self.attn(h)
|
||||||
|
return h.mean(dim=2)
|
||||||
|
|
||||||
|
|
||||||
|
class CheckpointedLayer(nn.Module):
|
||||||
|
"""
|
||||||
|
Wraps a module. When forward() is called, passes kwargs that require_grad through torch.checkpoint() and bypasses
|
||||||
|
checkpoint for all other args.
|
||||||
|
"""
|
||||||
|
def __init__(self, wrap):
|
||||||
|
super().__init__()
|
||||||
|
self.wrap = wrap
|
||||||
|
|
||||||
|
def forward(self, x, *args, **kwargs):
|
||||||
|
for k, v in kwargs.items():
|
||||||
|
assert not (isinstance(v, torch.Tensor) and v.requires_grad) # This would screw up checkpointing.
|
||||||
|
partial = functools.partial(self.wrap, **kwargs)
|
||||||
|
return torch.utils.checkpoint.checkpoint(partial, x, *args)
|
||||||
|
|
||||||
|
|
||||||
|
class CheckpointedXTransformerWrapper(nn.Module):
|
||||||
|
"""
|
||||||
|
Wraps a TransformerWrapper and applies CheckpointedLayer to each layer.
|
||||||
|
"""
|
||||||
|
def __init__(self, checkpoint=True, **xtransformer_kwargs):
|
||||||
|
super().__init__()
|
||||||
|
self.transformer = TransformerWrapper(**xtransformer_kwargs)
|
||||||
|
|
||||||
|
if not checkpoint:
|
||||||
|
return
|
||||||
|
for i in range(len(self.transformer.attn_layers.layers)):
|
||||||
|
n, b, r = self.transformer.attn_layers.layers[i]
|
||||||
|
self.transformer.attn_layers.layers[i] = nn.ModuleList([n, CheckpointedLayer(b), r])
|
||||||
|
|
||||||
|
def forward(self, x, **kwargs):
|
||||||
|
return self.transformer(x, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
|
class AutoregressiveCodegen(nn.Module):
|
||||||
|
def __init__(self, model_dim, depth, num_text_tokens=256, num_mel_tokens=8194, max_text_tokens=4000,
|
||||||
|
max_mel_tokens=4000, dropout=.1):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.START_TOKEN=8192
|
||||||
|
self.STOP_TOKEN=8193
|
||||||
|
self.max_mel_tokens = max_mel_tokens
|
||||||
|
self.minicoder = ConditioningEncoder(80, model_dim, do_checkpointing=False)
|
||||||
|
self.encoder = CheckpointedXTransformerWrapper(
|
||||||
|
num_tokens=num_text_tokens,
|
||||||
|
max_seq_len=max_text_tokens,
|
||||||
|
attn_layers = Encoder(
|
||||||
|
depth=depth//2,
|
||||||
|
heads=model_dim//64,
|
||||||
|
dim=model_dim,
|
||||||
|
attn_dropout=dropout,
|
||||||
|
ff_dropout=dropout,
|
||||||
|
use_rmsnorm=True,
|
||||||
|
ff_glu=True,
|
||||||
|
ff_mult=1,
|
||||||
|
rotary_pos_emb=True,
|
||||||
|
rel_pos_bias=True,
|
||||||
|
))
|
||||||
|
self.decoder = CheckpointedXTransformerWrapper(
|
||||||
|
num_tokens=num_mel_tokens,
|
||||||
|
max_seq_len=max_mel_tokens,
|
||||||
|
attn_layers=Decoder(
|
||||||
|
depth=depth,
|
||||||
|
heads=model_dim//64,
|
||||||
|
dim=model_dim,
|
||||||
|
attn_dropout=dropout,
|
||||||
|
ff_dropout=dropout,
|
||||||
|
use_rmsnorm=True,
|
||||||
|
ff_glu=True,
|
||||||
|
ff_mult=1,
|
||||||
|
rotary_pos_emb=True,
|
||||||
|
rel_pos_bias=True,
|
||||||
|
cross_attend=True,
|
||||||
|
))
|
||||||
|
|
||||||
|
def get_grad_norm_parameter_groups(self):
|
||||||
|
return {
|
||||||
|
'encoder': list(self.encoder.parameters()),
|
||||||
|
'decoder': list(self.decoder.parameters()),
|
||||||
|
'minicoder': list(self.minicoder.parameters()),
|
||||||
|
}
|
||||||
|
|
||||||
|
def forward(self, text_codes, conditioning_signal, mel_codes, wav_lengths, return_loss=True):
|
||||||
|
# Format mel_codes with a stop token on the end.
|
||||||
|
mel_lengths = wav_lengths // 1024 + 1
|
||||||
|
for b in range(mel_codes.shape[0]):
|
||||||
|
mel_codes[b, mel_lengths[b]:] = self.STOP_TOKEN
|
||||||
|
mel_codes = F.pad(mel_codes, (0, 1), value=self.STOP_TOKEN)
|
||||||
|
|
||||||
|
# Build the context
|
||||||
|
if len(conditioning_signal.shape) != 4:
|
||||||
|
conditioning_signal = conditioning_signal.unsqueeze(1)
|
||||||
|
cond_embs = []
|
||||||
|
for i in range(conditioning_signal.shape[1]):
|
||||||
|
cond_embs.append(self.minicoder(conditioning_signal[:, i]))
|
||||||
|
cond_emb = torch.stack(cond_embs, dim=1).mean(dim=1, keepdim=True)
|
||||||
|
enc_text = self.encoder(text_codes, return_embeddings=True)
|
||||||
|
context = torch.cat([cond_emb, enc_text], dim=1)
|
||||||
|
|
||||||
|
# Execute the decoder
|
||||||
|
dec_inputs = F.pad(mel_codes, (1,0), value=self.START_TOKEN)[:, :-1]
|
||||||
|
dec = self.decoder(dec_inputs, context=context)
|
||||||
|
if not return_loss:
|
||||||
|
return dec
|
||||||
|
loss_mel = F.cross_entropy(dec.permute(0,2,1), mel_codes)
|
||||||
|
return loss_mel
|
||||||
|
|
||||||
|
def generate(self, conditioning_signal, text_codes, **hf_generate_kwargs):
|
||||||
|
if not hasattr(self, 'inference_model'):
|
||||||
|
self.inference_model = InferenceModel(self)
|
||||||
|
|
||||||
|
if len(conditioning_signal.shape) != 4:
|
||||||
|
conditioning_signal = conditioning_signal.unsqueeze(1)
|
||||||
|
cond_embs = []
|
||||||
|
for i in range(conditioning_signal.shape[1]):
|
||||||
|
cond_embs.append(self.minicoder(conditioning_signal[:, i]))
|
||||||
|
cond_emb = torch.stack(cond_embs, dim=1).mean(dim=1, keepdim=True)
|
||||||
|
enc_text = self.encoder(text_codes, return_embeddings=True)
|
||||||
|
context = torch.cat([cond_emb, enc_text], dim=1)
|
||||||
|
self.inference_model.store_context(context)
|
||||||
|
|
||||||
|
gen = self.inference_model.generate(bos_token_id=self.START_TOKEN, pad_token_id=self.STOP_TOKEN, eos_token_id=self.STOP_TOKEN,
|
||||||
|
max_length=250, output_attentions=False, return_dict_in_generate=True,
|
||||||
|
**hf_generate_kwargs)
|
||||||
|
return gen.sequences
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
codegen = AutoregressiveCodegen(1024, 20)
|
||||||
|
codegen.generate(torch.randn((1,80,120)), torch.randint(0,256,(1,200)))
|
||||||
|
codegen(torch.randint(0,256, (2,200)),
|
||||||
|
torch.randn(2,80,120),
|
||||||
|
torch.randint(0,8192, (2,350)),
|
||||||
|
torch.tensor([192,350]))
|
Loading…
Reference in New Issue
Block a user