Package everything
This commit is contained in:
parent
cf7a4bc7e7
commit
3b19328886
|
@ -7,4 +7,6 @@ inflect
|
|||
progressbar
|
||||
einops
|
||||
unidecode
|
||||
entmax
|
||||
entmax
|
||||
scipy
|
||||
librosa
|
22
setup.py
Normal file
22
setup.py
Normal file
|
@ -0,0 +1,22 @@
|
|||
from setuptools import setup, find_packages
|
||||
|
||||
install_requires = [
|
||||
"torch",
|
||||
"torchaudio",
|
||||
"rotary_embedding_torch",
|
||||
"transformers",
|
||||
"tokenizers",
|
||||
"inflect",
|
||||
"progressbar",
|
||||
"einops",
|
||||
"unidecode",
|
||||
"entmax",
|
||||
"scipy",
|
||||
"librosa"
|
||||
]
|
||||
|
||||
setup(
|
||||
name="tortoise_tts",
|
||||
packages=['tortoise_tts'],
|
||||
install_requires=install_requires,
|
||||
)
|
1
tortoise_tts/__init__.py
Normal file
1
tortoise_tts/__init__.py
Normal file
|
@ -0,0 +1 @@
|
|||
from .api import TextToSpeech
|
|
@ -8,18 +8,18 @@ import torch.nn.functional as F
|
|||
import progressbar
|
||||
import torchaudio
|
||||
|
||||
from models.classifier import AudioMiniEncoderWithClassifierHead
|
||||
from models.cvvp import CVVP
|
||||
from models.diffusion_decoder import DiffusionTts
|
||||
from models.autoregressive import UnifiedVoice
|
||||
from tortoise_tts.models.classifier import AudioMiniEncoderWithClassifierHead
|
||||
from tortoise_tts.models.cvvp import CVVP
|
||||
from tortoise_tts.models.diffusion_decoder import DiffusionTts
|
||||
from tortoise_tts.models.autoregressive import UnifiedVoice
|
||||
from tqdm import tqdm
|
||||
|
||||
from models.arch_util import TorchMelSpectrogram
|
||||
from models.clvp import CLVP
|
||||
from models.vocoder import UnivNetGenerator
|
||||
from utils.audio import load_audio, wav_to_univnet_mel, denormalize_tacotron_mel
|
||||
from utils.diffusion import SpacedDiffusion, space_timesteps, get_named_beta_schedule
|
||||
from utils.tokenizer import VoiceBpeTokenizer, lev_distance
|
||||
from tortoise_tts.models.arch_util import TorchMelSpectrogram
|
||||
from tortoise_tts.models.clvp import CLVP
|
||||
from tortoise_tts.models.vocoder import UnivNetGenerator
|
||||
from tortoise_tts.utils.audio import load_audio, wav_to_univnet_mel, denormalize_tacotron_mel
|
||||
from tortoise_tts.utils.diffusion import SpacedDiffusion, space_timesteps, get_named_beta_schedule
|
||||
from tortoise_tts.utils.tokenizer import VoiceBpeTokenizer, lev_distance
|
||||
|
||||
|
||||
pbar = None
|
0
tortoise_tts/models/__init__.py
Normal file
0
tortoise_tts/models/__init__.py
Normal file
|
@ -5,7 +5,7 @@ import torch
|
|||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torchaudio
|
||||
from models.xtransformers import ContinuousTransformerWrapper, RelativePositionBias
|
||||
from tortoise_tts.models.xtransformers import ContinuousTransformerWrapper, RelativePositionBias
|
||||
|
||||
|
||||
def zero_module(module):
|
|
@ -6,8 +6,8 @@ import torch.nn.functional as F
|
|||
from transformers import GPT2Config, GPT2PreTrainedModel, LogitsProcessorList
|
||||
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
|
||||
from transformers.utils.model_parallel_utils import get_device_map, assert_device_map
|
||||
from models.arch_util import AttentionBlock
|
||||
from utils.typical_sampling import TypicalLogitsWarper
|
||||
from tortoise_tts.models.arch_util import AttentionBlock
|
||||
from tortoise_tts.utils.typical_sampling import TypicalLogitsWarper
|
||||
|
||||
|
||||
def null_position_embeddings(range, dim):
|
|
@ -3,7 +3,7 @@ import torch.nn as nn
|
|||
import torch.nn.functional as F
|
||||
from torch.utils.checkpoint import checkpoint
|
||||
|
||||
from models.arch_util import Upsample, Downsample, normalization, zero_module, AttentionBlock
|
||||
from tortoise_tts.models.arch_util import Upsample, Downsample, normalization, zero_module, AttentionBlock
|
||||
|
||||
|
||||
class ResBlock(nn.Module):
|
|
@ -3,9 +3,9 @@ import torch.nn as nn
|
|||
import torch.nn.functional as F
|
||||
from torch import einsum
|
||||
|
||||
from models.arch_util import CheckpointedXTransformerEncoder
|
||||
from models.transformer import Transformer
|
||||
from models.xtransformers import Encoder
|
||||
from tortoise_tts.models.arch_util import CheckpointedXTransformerEncoder
|
||||
from tortoise_tts.models.transformer import Transformer
|
||||
from tortoise_tts.models.xtransformers import Encoder
|
||||
|
||||
|
||||
def exists(val):
|
|
@ -4,8 +4,8 @@ import torch.nn.functional as F
|
|||
from torch import einsum
|
||||
from torch.utils.checkpoint import checkpoint
|
||||
|
||||
from models.arch_util import AttentionBlock
|
||||
from models.xtransformers import ContinuousTransformerWrapper, Encoder
|
||||
from tortoise_tts.models.arch_util import AttentionBlock
|
||||
from tortoise_tts.models.xtransformers import ContinuousTransformerWrapper, Encoder
|
||||
|
||||
|
||||
def exists(val):
|
|
@ -7,7 +7,7 @@ import torch.nn as nn
|
|||
import torch.nn.functional as F
|
||||
from torch import autocast
|
||||
|
||||
from models.arch_util import normalization, AttentionBlock
|
||||
from tortoise_tts.models.arch_util import normalization, AttentionBlock
|
||||
|
||||
|
||||
def is_latent(t):
|
0
tortoise_tts/results/__init__.py
Normal file
0
tortoise_tts/results/__init__.py
Normal file
4
tortoise_tts/utils/__init__.py
Normal file
4
tortoise_tts/utils/__init__.py
Normal file
|
@ -0,0 +1,4 @@
|
|||
from .audio import (
|
||||
load_audio,
|
||||
get_voices
|
||||
)
|
|
@ -6,7 +6,7 @@ import torchaudio
|
|||
import numpy as np
|
||||
from scipy.io.wavfile import read
|
||||
|
||||
from utils.stft import STFT
|
||||
from tortoise_tts.utils.stft import STFT
|
||||
|
||||
|
||||
def load_wav_to_torch(full_path):
|
|
@ -3,6 +3,7 @@ import re
|
|||
import inflect
|
||||
import torch
|
||||
from tokenizers import Tokenizer
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
# Regular expression matching whitespace:
|
||||
|
@ -165,6 +166,8 @@ def lev_distance(s1, s2):
|
|||
|
||||
class VoiceBpeTokenizer:
|
||||
def __init__(self, vocab_file='data/tokenizer.json'):
|
||||
vocab_file = str(Path(__file__).parent.parent / Path(vocab_file))
|
||||
print(vocab_file)
|
||||
if vocab_file is not None:
|
||||
self.tokenizer = Tokenizer.from_file(vocab_file)
|
||||
|
0
tortoise_tts/voices/__init__.py
Normal file
0
tortoise_tts/voices/__init__.py
Normal file
Loading…
Reference in New Issue
Block a user