backported additions from e-c-k-e-r/vall-e (paths sorted-by-duration and batched sampling)
This commit is contained in:
parent
e0a93a6400
commit
43d85d97aa
|
@ -163,6 +163,8 @@ class Dataset:
|
|||
|
||||
sample_type: str = "path" # path | speaker
|
||||
sample_order: str = "shuffle" # duration
|
||||
sample_max_duration_batch: float = 0.0 # total number of seconds of utterances per batched, 0 to disable
|
||||
|
||||
|
||||
tasks_list: list[str] = field(default_factory=lambda: ["tts"])
|
||||
|
||||
|
|
|
@ -12,7 +12,7 @@ import itertools
|
|||
|
||||
from .config import cfg
|
||||
from .emb.mel import trim, trim_random, repeat_extend_audio, merge_audio, decode_to_file
|
||||
from .utils.sampler import PoolSampler, OrderedSampler, RandomSampler
|
||||
from .utils.sampler import PoolSampler, OrderedSampler, BatchedOrderedSampler, RandomSampler
|
||||
from .utils.distributed import global_rank, local_rank, world_size
|
||||
|
||||
from collections import defaultdict
|
||||
|
@ -270,23 +270,29 @@ class Dataset(_Dataset):
|
|||
if self.sampler_order != "duration":
|
||||
continue
|
||||
|
||||
bucket = str(int(round(duration)))
|
||||
bucket = int(round(duration))
|
||||
if bucket not in self.duration_buckets:
|
||||
self.duration_buckets[bucket] = []
|
||||
self.duration_buckets[bucket].append( ( Path(path), duration ) )
|
||||
|
||||
# ensure they're ordered
|
||||
self.duration_buckets = dict(sorted(self.duration_buckets.items()))
|
||||
|
||||
# sort by duration
|
||||
if self.sampler_order == "duration":
|
||||
flattened = {}
|
||||
# sort and interleave
|
||||
for bucket in self.duration_buckets:
|
||||
# sort by duration
|
||||
self.duration_buckets[bucket].sort( key=lambda x: x[1] )
|
||||
# split to retain tuples
|
||||
flattened[bucket] = self.duration_buckets[bucket]
|
||||
# replace with path
|
||||
self.duration_buckets[bucket] = [ x[0] for x in self.duration_buckets[bucket] ]
|
||||
flattened[bucket] = [ x[0] for x in flattened[bucket] ]
|
||||
# flatten by paths
|
||||
self.duration_buckets[bucket] = [*_interleaved_reorder(self.duration_buckets[bucket], self.get_speaker)]
|
||||
flattened[bucket] = [*_interleaved_reorder(flattened[bucket], self.get_speaker)]
|
||||
# flatten paths
|
||||
self.paths = list(itertools.chain.from_iterable(self.duration_buckets.values()))
|
||||
self.paths = list(itertools.chain.from_iterable(flattened.values()))
|
||||
elif self.sampler_order == "shuffle":
|
||||
# just interleave
|
||||
self.paths = [*_interleaved_reorder(self.paths, self.get_speaker)]
|
||||
|
@ -328,7 +334,10 @@ class Dataset(_Dataset):
|
|||
sampler_path = cfg.rel_path / f"sampler.{self.sampler_type}.rank{global_rank()}.pt"
|
||||
|
||||
if self.sampler_type == "path":
|
||||
self.sampler = OrderedSampler( len(self) )
|
||||
if self.sampler_order == "duration" and cfg.dataset.sample_max_duration_batch > 0:
|
||||
self.sampler = BatchedOrderedSampler( self.duration_buckets, cfg.dataset.sample_max_duration_batch, cfg.hyperparameters.batch_size )
|
||||
else:
|
||||
self.sampler = OrderedSampler( len(self) )
|
||||
self.samplers = {}
|
||||
self.spkr_samplers = {}
|
||||
else:
|
||||
|
@ -564,17 +573,23 @@ def _create_dataloader(dataset, training):
|
|||
shuffle = False
|
||||
"""
|
||||
|
||||
kwargs = dict(
|
||||
shuffle=dataset.shuffle,
|
||||
batch_size=cfg.hyperparameters.batch_size if training else cfg.evaluation.batch_size,
|
||||
drop_last=training,
|
||||
sampler=dataset.sampler,
|
||||
) if not isinstance(dataset.sampler, BatchedOrderedSampler) else dict(
|
||||
batch_sampler=dataset.sampler,
|
||||
)
|
||||
|
||||
return DataLoader(
|
||||
dataset=dataset,
|
||||
batch_size=cfg.hyperparameters.batch_size if training else cfg.evaluation.batch_size,
|
||||
shuffle=dataset.shuffle,
|
||||
drop_last=training,
|
||||
num_workers=cfg.dataset.workers,
|
||||
collate_fn=collate_fn,
|
||||
persistent_workers=cfg.dataset.workers > 1,
|
||||
pin_memory=False, # True,
|
||||
worker_init_fn=_seed_worker,
|
||||
sampler=dataset.sampler,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
def create_datasets():
|
||||
|
|
|
@ -74,6 +74,53 @@ class OrderedSampler(Sampler):
|
|||
self.position = state["position"]
|
||||
self.length = state["length"]
|
||||
|
||||
# Like the above, but will batch based on token count
|
||||
class BatchedOrderedSampler(Sampler):
|
||||
def __init__( self, buckets, max_duration=0, max_batch_size=0 ):
|
||||
self.position = 0
|
||||
self.batches = []
|
||||
|
||||
assert max_duration != 0 and max_batch_size != 0, "max_duration and max_batch_size cannot both be 0"
|
||||
|
||||
current_batch = []
|
||||
current_size = 0
|
||||
current_index = 0
|
||||
for key, bucket in buckets.items():
|
||||
for path, duration in bucket:
|
||||
# flush
|
||||
should_flush = False
|
||||
if max_duration > 0 and current_size + duration > max_duration:
|
||||
should_flush = True
|
||||
elif max_batch_size > 0 and len(current_batch) >= max_batch_size:
|
||||
should_flush = True
|
||||
|
||||
if should_flush and len(current_batch) > 0:
|
||||
self.batches.append( current_batch )
|
||||
current_batch = []
|
||||
current_size = 0
|
||||
|
||||
current_batch.append( current_index )
|
||||
current_index += 1
|
||||
current_size += duration
|
||||
|
||||
def __len__(self):
|
||||
return len(self.batches)
|
||||
|
||||
def __iter__(self):
|
||||
if self.position >= len(self.batches):
|
||||
self.position = 0
|
||||
|
||||
while self.position < len(self.batches):
|
||||
yield self.batches[self.position]
|
||||
self.position += 1
|
||||
|
||||
def get_state(self):
|
||||
return { "position": self.position, "batches": self.batches }
|
||||
|
||||
def set_state(self, state):
|
||||
self.position = state["position"]
|
||||
self.batches = state["batches"]
|
||||
|
||||
# Randomly samples indices from a given sequence from 0 to length
|
||||
# Allows saving and loading state
|
||||
class RandomSampler(Sampler):
|
||||
|
|
Loading…
Reference in New Issue
Block a user