implement clip-guided generation (and never use it...)
This commit is contained in:
parent
cf80d7317c
commit
4aab81b074
36
api.py
36
api.py
|
@ -76,7 +76,30 @@ def load_conditioning(clip, cond_length=132300):
|
|||
return mel_clip.unsqueeze(0).cuda()
|
||||
|
||||
|
||||
def fix_autoregressive_output(codes, stop_token):
|
||||
def clip_guided_generation(autoregressive_model, clip_model, conditioning_input, text_input, num_batches, stop_mel_token,
|
||||
tokens_per_clip_inference=10, clip_results_to_reduce_to=8, **generation_kwargs):
|
||||
"""
|
||||
Uses a CLVP model trained to associate full text with **partial** audio clips to pick the best generation candidates
|
||||
every few iterations. The top results are then propagated forward through the generation process. Rinse and repeat.
|
||||
This is a hybrid between beam search and sampling.
|
||||
"""
|
||||
token_goal = tokens_per_clip_inference
|
||||
finished = False
|
||||
while not finished and token_goal < autoregressive_model.max_mel_tokens:
|
||||
samples = []
|
||||
for b in tqdm(range(num_batches)):
|
||||
codes = autoregressive_model.inference_speech(conditioning_input, text_input, **generation_kwargs)
|
||||
samples.append(codes)
|
||||
for batch in samples:
|
||||
for i in range(batch.shape[0]):
|
||||
batch[i] = fix_autoregressive_output(batch[i], stop_mel_token, complain=False)
|
||||
clip_results.append(clip_model(text_input.repeat(batch.shape[0], 1), batch, return_loss=False))
|
||||
clip_results = torch.cat(clip_results, dim=0)
|
||||
samples = torch.cat(samples, dim=0)
|
||||
best_results = samples[torch.topk(clip_results, k=clip_results_to_reduce_to).indices]
|
||||
|
||||
|
||||
def fix_autoregressive_output(codes, stop_token, complain=True):
|
||||
"""
|
||||
This function performs some padding on coded audio that fixes a mismatch issue between what the diffusion model was
|
||||
trained on and what the autoregressive code generator creates (which has no padding or end).
|
||||
|
@ -89,7 +112,8 @@ def fix_autoregressive_output(codes, stop_token):
|
|||
# Strip off the autoregressive stop token and add padding.
|
||||
stop_token_indices = (codes == stop_token).nonzero()
|
||||
if len(stop_token_indices) == 0:
|
||||
print("No stop tokens found, enjoy that output of yours!")
|
||||
if complain:
|
||||
print("No stop tokens found, enjoy that output of yours!")
|
||||
return codes
|
||||
else:
|
||||
codes[stop_token_indices] = 83
|
||||
|
@ -136,14 +160,14 @@ class TextToSpeech:
|
|||
heads=16, number_text_tokens=256, start_text_token=255, checkpointing=False,
|
||||
train_solo_embeddings=False,
|
||||
average_conditioning_embeddings=True).cpu().eval()
|
||||
self.autoregressive.load_state_dict(torch.load('.models/autoregressive_diverse.pth'))
|
||||
self.autoregressive.load_state_dict(torch.load('.models/autoregressive_audiobooks.pth'))
|
||||
|
||||
self.autoregressive_for_latents = UnifiedVoice(max_mel_tokens=604, max_text_tokens=402, max_conditioning_inputs=2, layers=30,
|
||||
model_dim=1024,
|
||||
heads=16, number_text_tokens=256, start_text_token=255, checkpointing=False,
|
||||
train_solo_embeddings=False,
|
||||
average_conditioning_embeddings=True).cpu().eval()
|
||||
self.autoregressive_for_latents.load_state_dict(torch.load('.models/autoregressive_diverse.pth'))
|
||||
self.autoregressive_for_latents.load_state_dict(torch.load('.models/autoregressive_audiobooks.pth'))
|
||||
|
||||
self.clip = VoiceCLIP(dim_text=512, dim_speech=512, dim_latent=512, num_text_tokens=256, text_enc_depth=12,
|
||||
text_seq_len=350, text_heads=8,
|
||||
|
@ -154,7 +178,7 @@ class TextToSpeech:
|
|||
self.diffusion = DiffusionTts(model_channels=1024, num_layers=10, in_channels=100, out_channels=200,
|
||||
in_latent_channels=1024, in_tokens=8193, dropout=0, use_fp16=False, num_heads=16,
|
||||
layer_drop=0, unconditioned_percentage=0).cpu().eval()
|
||||
self.diffusion.load_state_dict(torch.load('.models/diffusion.pth'))
|
||||
self.diffusion.load_state_dict(torch.load('.models/diffusion_decoder_audiobooks.pth'))
|
||||
|
||||
self.vocoder = UnivNetGenerator().cpu()
|
||||
self.vocoder.load_state_dict(torch.load('.models/vocoder.pth')['model_g'])
|
||||
|
@ -170,7 +194,7 @@ class TextToSpeech:
|
|||
presets = {
|
||||
'intelligible': {'temperature': .5, 'length_penalty': 2.0, 'repetition_penalty': 2.0, 'top_p': .5, 'diffusion_iterations': 100, 'cond_free': True, 'cond_free_k': .7, 'diffusion_temperature': .7},
|
||||
'mid': {'temperature': .7, 'length_penalty': 1.0, 'repetition_penalty': 2.0, 'top_p': .7, 'diffusion_iterations': 100, 'cond_free': True, 'cond_free_k': 1.5, 'diffusion_temperature': .8},
|
||||
'realistic': {'temperature': .9, 'length_penalty': 1.0, 'repetition_penalty': 1.3, 'top_p': .9, 'diffusion_iterations': 100, 'cond_free': True, 'cond_free_k': 2, 'diffusion_temperature': 1},
|
||||
'realistic': {'temperature': 1.0, 'length_penalty': 1.0, 'repetition_penalty': 2.0, 'top_p': .9, 'diffusion_iterations': 100, 'cond_free': True, 'cond_free_k': 2, 'diffusion_temperature': 1},
|
||||
}
|
||||
kwargs.update(presets[preset])
|
||||
return self.tts(text, voice_samples, **kwargs)
|
||||
|
|
|
@ -8,7 +8,7 @@ from utils.audio import load_audio
|
|||
if __name__ == '__main__':
|
||||
fname = 'Y:\\clips\\books2\\subset512-oco.tsv'
|
||||
stop_after = 128
|
||||
outpath_base = 'D:\\tmp\\tortoise-tts-eval\\diverse'
|
||||
outpath_base = 'D:\\tmp\\tortoise-tts-eval\\audiobooks'
|
||||
outpath_real = 'D:\\tmp\\tortoise-tts-eval\\real'
|
||||
|
||||
os.makedirs(outpath_real, exist_ok=True)
|
||||
|
|
|
@ -511,7 +511,8 @@ class UnifiedVoice(nn.Module):
|
|||
loss_mel = F.cross_entropy(mel_logits, mel_targets.long())
|
||||
return loss_mel.mean()
|
||||
|
||||
def inference_speech(self, speech_conditioning_input, text_inputs, typical_sampling=False, typical_mass=.9, **hf_generate_kwargs):
|
||||
def inference_speech(self, speech_conditioning_input, text_inputs, input_tokens=None, num_return_sequences=1,
|
||||
max_generate_length=None, typical_sampling=False, typical_mass=.9, **hf_generate_kwargs):
|
||||
seq_length = self.max_mel_tokens + self.max_text_tokens + 2
|
||||
if not hasattr(self, 'inference_model'):
|
||||
# TODO: Decouple gpt_config from this inference model.
|
||||
|
@ -541,13 +542,23 @@ class UnifiedVoice(nn.Module):
|
|||
emb = torch.cat([conds, text_emb], dim=1)
|
||||
self.inference_model.store_mel_emb(emb)
|
||||
|
||||
fake_inputs = torch.full((emb.shape[0], conds.shape[1]+emb.shape[1],), fill_value=1, dtype=torch.long, device=text_inputs.device)
|
||||
fake_inputs[:,-1] = self.start_mel_token
|
||||
fake_inputs = torch.full((emb.shape[0], conds.shape[1] + emb.shape[1],), fill_value=1, dtype=torch.long,
|
||||
device=text_inputs.device)
|
||||
fake_inputs[:, -1] = self.start_mel_token
|
||||
trunc_index = fake_inputs.shape[1]
|
||||
if input_tokens is None:
|
||||
inputs = fake_inputs
|
||||
else:
|
||||
assert num_return_sequences % input_tokens.shape[0] == 0, "The number of return sequences must be divisible by the number of input sequences"
|
||||
fake_inputs = fake_inputs.repeat(num_return_sequences, 1)
|
||||
input_tokens = input_tokens.repeat(num_return_sequences // input_tokens.shape[0], 1)
|
||||
inputs = torch.cat([fake_inputs, input_tokens], dim=1)
|
||||
|
||||
logits_processor = LogitsProcessorList([TypicalLogitsWarper(mass=typical_mass)]) if typical_sampling else LogitsProcessorList()
|
||||
gen = self.inference_model.generate(fake_inputs, bos_token_id=self.start_mel_token, pad_token_id=self.stop_mel_token, eos_token_id=self.stop_mel_token,
|
||||
max_length=fake_inputs.shape[-1] + self.max_mel_tokens - 1, logits_processor=logits_processor, **hf_generate_kwargs)
|
||||
return gen[:, fake_inputs.shape[1]:]
|
||||
max_length = trunc_index + self.max_mel_tokens - 1 if max_generate_length is None else trunc_index + max_generate_length
|
||||
gen = self.inference_model.generate(inputs, bos_token_id=self.start_mel_token, pad_token_id=self.stop_mel_token, eos_token_id=self.stop_mel_token,
|
||||
max_length=max_length, logits_processor=logits_processor, **hf_generate_kwargs)
|
||||
return gen[:, trunc_index:]
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
7
read.py
7
read.py
|
@ -32,15 +32,16 @@ if __name__ == '__main__':
|
|||
preselected_cond_voices = {
|
||||
'emma_stone': ['voices/emma_stone/1.wav','voices/emma_stone/2.wav','voices/emma_stone/3.wav'],
|
||||
'tom_hanks': ['voices/tom_hanks/1.wav','voices/tom_hanks/2.wav','voices/tom_hanks/3.wav'],
|
||||
'patrick_stewart': ['voices/patrick_stewart/1.wav','voices/patrick_stewart/2.wav','voices/patrick_stewart/3.wav','voices/patrick_stewart/4.wav'],
|
||||
}
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-textfile', type=str, help='A file containing the text to read.', default="data/riding_hood.txt")
|
||||
parser.add_argument('-voice', type=str, help='Use a preset conditioning voice (defined above). Overrides cond_path.', default='emma_stone')
|
||||
parser.add_argument('-num_samples', type=int, help='How many total outputs the autoregressive transformer should produce.', default=512)
|
||||
parser.add_argument('-voice', type=str, help='Use a preset conditioning voice (defined above). Overrides cond_path.', default='patrick_stewart')
|
||||
parser.add_argument('-num_samples', type=int, help='How many total outputs the autoregressive transformer should produce.', default=128)
|
||||
parser.add_argument('-batch_size', type=int, help='How many samples to process at once in the autoregressive model.', default=16)
|
||||
parser.add_argument('-output_path', type=str, help='Where to store outputs.', default='results/longform/')
|
||||
parser.add_argument('-generation_preset', type=str, help='Preset to use for generation', default='intelligible')
|
||||
parser.add_argument('-generation_preset', type=str, help='Preset to use for generation', default='realistic')
|
||||
args = parser.parse_args()
|
||||
os.makedirs(args.output_path, exist_ok=True)
|
||||
|
||||
|
|
17
sweep.py
17
sweep.py
|
@ -25,16 +25,15 @@ def permutations(args):
|
|||
|
||||
if __name__ == '__main__':
|
||||
fname = 'Y:\\clips\\books2\\subset512-oco.tsv'
|
||||
stop_after = 128
|
||||
outpath_base = 'D:\\tmp\\tortoise-tts-eval\\sweep'
|
||||
stop_after = 512
|
||||
outpath_base = 'D:\\tmp\\tortoise-tts-eval\\sweep-2'
|
||||
outpath_real = 'D:\\tmp\\tortoise-tts-eval\\real'
|
||||
|
||||
arg_ranges = {
|
||||
'top_p': [.5, 1],
|
||||
'temperature': [.5, 1],
|
||||
'diffusion_temperature': [.6, 1],
|
||||
'cond_free_k': [0, 1, 4],
|
||||
'repetition_penalty': [1.0, 2.0]
|
||||
'top_p': [.8,1],
|
||||
'temperature': [.8,.9,1],
|
||||
'diffusion_temperature': [.8,1],
|
||||
'cond_free_k': [1,2,5,10],
|
||||
}
|
||||
cfgs = permutations(arg_ranges)
|
||||
shuffle(cfgs)
|
||||
|
@ -56,8 +55,8 @@ if __name__ == '__main__':
|
|||
path = os.path.join(os.path.dirname(fname), line[1])
|
||||
cond_audio = load_audio(path, 22050)
|
||||
torchaudio.save(os.path.join(outpath_real, os.path.basename(line[1])), cond_audio, 22050)
|
||||
sample = tts.tts(transcript, [cond_audio, cond_audio], num_autoregressive_samples=256,
|
||||
k=1, diffusion_iterations=70, length_penalty=1.0, **cfg)
|
||||
sample = tts.tts(transcript, [cond_audio, cond_audio], num_autoregressive_samples=32, repetition_penalty=2.0,
|
||||
k=1, diffusion_iterations=32, length_penalty=1.0, **cfg)
|
||||
down = torchaudio.functional.resample(sample, 24000, 22050)
|
||||
fout_path = os.path.join(outpath, os.path.basename(line[1]))
|
||||
torchaudio.save(fout_path, down.squeeze(0), 22050)
|
||||
|
|
Loading…
Reference in New Issue
Block a user