Remove intelligibility refinement

It's not longer a concern. :)
This commit is contained in:
James Betker 2022-04-13 17:04:19 -06:00
parent 56f8385b99
commit 776e5634fd
2 changed files with 1 additions and 28 deletions

26
api.py
View File

@ -5,9 +5,7 @@ from urllib import request
import torch import torch
import torch.nn.functional as F import torch.nn.functional as F
import torchaudio
import progressbar import progressbar
import ocotillo
from models.diffusion_decoder import DiffusionTts from models.diffusion_decoder import DiffusionTts
from models.autoregressive import UnifiedVoice from models.autoregressive import UnifiedVoice
@ -262,27 +260,3 @@ class TextToSpeech:
if len(wav_candidates) > 1: if len(wav_candidates) > 1:
return wav_candidates return wav_candidates
return wav_candidates[0] return wav_candidates[0]
def refine_for_intellibility(self, wav_candidates, corresponding_codes, output_path):
"""
Further refine the remaining candidates using a ASR model to pick out the ones that are the most understandable.
TODO: finish this function
:param wav_candidates:
:return:
"""
transcriber = ocotillo.Transcriber(on_cuda=True)
transcriptions = transcriber.transcribe_batch(torch.cat(wav_candidates, dim=0).squeeze(1), 24000)
best = 99999999
for i, transcription in enumerate(transcriptions):
dist = lev_distance(transcription, args.text.lower())
if dist < best:
best = dist
best_codes = corresponding_codes[i].unsqueeze(0)
best_wav = wav_candidates[i]
del transcriber
torchaudio.save(os.path.join(output_path, f'{voice}_poor.wav'), best_wav.squeeze(0).cpu(), 24000)
# Perform diffusion again with the high-quality diffuser.
mel = do_spectrogram_diffusion(diffusion, final_diffuser, best_codes, cond_diffusion, mean=False)
wav = vocoder.inference(mel)
torchaudio.save(os.path.join(args.output_path, f'{voice}.wav'), wav.squeeze(0).cpu(), 24000)

View File

@ -7,5 +7,4 @@ inflect
progressbar progressbar
einops einops
unidecode unidecode
x-transformers x-transformers
ocotillo