Upgrade CLIP model and add eval_multiple
This commit is contained in:
parent
c66954b6a6
commit
b78ae92890
214
api.py
Normal file
214
api.py
Normal file
|
@ -0,0 +1,214 @@
|
||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
import random
|
||||||
|
from urllib import request
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn.functional as F
|
||||||
|
import torchaudio
|
||||||
|
import progressbar
|
||||||
|
import ocotillo
|
||||||
|
|
||||||
|
from models.diffusion_decoder import DiffusionTts
|
||||||
|
from models.autoregressive import UnifiedVoice
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
from models.arch_util import TorchMelSpectrogram
|
||||||
|
from models.text_voice_clip import VoiceCLIP
|
||||||
|
from models.vocoder import UnivNetGenerator
|
||||||
|
from utils.audio import load_audio, wav_to_univnet_mel, denormalize_tacotron_mel
|
||||||
|
from utils.diffusion import SpacedDiffusion, space_timesteps, get_named_beta_schedule
|
||||||
|
from utils.tokenizer import VoiceBpeTokenizer, lev_distance
|
||||||
|
|
||||||
|
|
||||||
|
pbar = None
|
||||||
|
def download_models():
|
||||||
|
MODELS = {
|
||||||
|
'clip.pth': 'https://huggingface.co/jbetker/tortoise-tts-clip/resolve/main/pytorch-model.bin',
|
||||||
|
'diffusion.pth': 'https://huggingface.co/jbetker/tortoise-tts-diffusion-v1/resolve/main/pytorch-model.bin',
|
||||||
|
'autoregressive.pth': 'https://huggingface.co/jbetker/tortoise-tts-autoregressive/resolve/main/pytorch-model.bin'
|
||||||
|
}
|
||||||
|
os.makedirs('.models', exist_ok=True)
|
||||||
|
def show_progress(block_num, block_size, total_size):
|
||||||
|
global pbar
|
||||||
|
if pbar is None:
|
||||||
|
pbar = progressbar.ProgressBar(maxval=total_size)
|
||||||
|
pbar.start()
|
||||||
|
|
||||||
|
downloaded = block_num * block_size
|
||||||
|
if downloaded < total_size:
|
||||||
|
pbar.update(downloaded)
|
||||||
|
else:
|
||||||
|
pbar.finish()
|
||||||
|
pbar = None
|
||||||
|
for model_name, url in MODELS.items():
|
||||||
|
if os.path.exists(f'.models/{model_name}'):
|
||||||
|
continue
|
||||||
|
print(f'Downloading {model_name} from {url}...')
|
||||||
|
request.urlretrieve(url, f'.models/{model_name}', show_progress)
|
||||||
|
print('Done.')
|
||||||
|
|
||||||
|
|
||||||
|
def load_discrete_vocoder_diffuser(trained_diffusion_steps=4000, desired_diffusion_steps=200, cond_free=True):
|
||||||
|
"""
|
||||||
|
Helper function to load a GaussianDiffusion instance configured for use as a vocoder.
|
||||||
|
"""
|
||||||
|
return SpacedDiffusion(use_timesteps=space_timesteps(trained_diffusion_steps, [desired_diffusion_steps]), model_mean_type='epsilon',
|
||||||
|
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', trained_diffusion_steps),
|
||||||
|
conditioning_free=cond_free, conditioning_free_k=1)
|
||||||
|
|
||||||
|
|
||||||
|
def load_conditioning(clip, cond_length=132300):
|
||||||
|
gap = clip.shape[-1] - cond_length
|
||||||
|
if gap < 0:
|
||||||
|
clip = F.pad(clip, pad=(0, abs(gap)))
|
||||||
|
elif gap > 0:
|
||||||
|
rand_start = random.randint(0, gap)
|
||||||
|
clip = clip[:, rand_start:rand_start + cond_length]
|
||||||
|
mel_clip = TorchMelSpectrogram()(clip.unsqueeze(0)).squeeze(0)
|
||||||
|
return mel_clip.unsqueeze(0).cuda()
|
||||||
|
|
||||||
|
|
||||||
|
def fix_autoregressive_output(codes, stop_token):
|
||||||
|
"""
|
||||||
|
This function performs some padding on coded audio that fixes a mismatch issue between what the diffusion model was
|
||||||
|
trained on and what the autoregressive code generator creates (which has no padding or end).
|
||||||
|
This is highly specific to the DVAE being used, so this particular coding will not necessarily work if used with
|
||||||
|
a different DVAE. This can be inferred by feeding a audio clip padded with lots of zeros on the end through the DVAE
|
||||||
|
and copying out the last few codes.
|
||||||
|
|
||||||
|
Failing to do this padding will produce speech with a harsh end that sounds like "BLAH" or similar.
|
||||||
|
"""
|
||||||
|
# Strip off the autoregressive stop token and add padding.
|
||||||
|
stop_token_indices = (codes == stop_token).nonzero()
|
||||||
|
if len(stop_token_indices) == 0:
|
||||||
|
print("No stop tokens found, enjoy that output of yours!")
|
||||||
|
return codes
|
||||||
|
else:
|
||||||
|
codes[stop_token_indices] = 83
|
||||||
|
stm = stop_token_indices.min().item()
|
||||||
|
codes[stm:] = 83
|
||||||
|
if stm - 3 < codes.shape[0]:
|
||||||
|
codes[-3] = 45
|
||||||
|
codes[-2] = 45
|
||||||
|
codes[-1] = 248
|
||||||
|
|
||||||
|
return codes
|
||||||
|
|
||||||
|
|
||||||
|
def do_spectrogram_diffusion(diffusion_model, diffuser, mel_codes, conditioning_input, mean=False):
|
||||||
|
"""
|
||||||
|
Uses the specified diffusion model and DVAE model to convert the provided MEL & conditioning inputs into an audio clip.
|
||||||
|
"""
|
||||||
|
with torch.no_grad():
|
||||||
|
cond_mel = wav_to_univnet_mel(conditioning_input.squeeze(1), do_normalization=False)
|
||||||
|
# Pad MEL to multiples of 32
|
||||||
|
msl = mel_codes.shape[-1]
|
||||||
|
dsl = 32
|
||||||
|
gap = dsl - (msl % dsl)
|
||||||
|
if gap > 0:
|
||||||
|
mel = torch.nn.functional.pad(mel_codes, (0, gap))
|
||||||
|
|
||||||
|
output_shape = (mel.shape[0], 100, mel.shape[-1]*4)
|
||||||
|
precomputed_embeddings = diffusion_model.timestep_independent(mel_codes, cond_mel)
|
||||||
|
if mean:
|
||||||
|
mel = diffuser.p_sample_loop(diffusion_model, output_shape, noise=torch.zeros(output_shape, device=mel_codes.device),
|
||||||
|
model_kwargs={'precomputed_aligned_embeddings': precomputed_embeddings})
|
||||||
|
else:
|
||||||
|
mel = diffuser.p_sample_loop(diffusion_model, output_shape, model_kwargs={'precomputed_aligned_embeddings': precomputed_embeddings})
|
||||||
|
return denormalize_tacotron_mel(mel)[:,:,:msl*4]
|
||||||
|
|
||||||
|
|
||||||
|
class TextToSpeech:
|
||||||
|
def __init__(self, autoregressive_batch_size=32):
|
||||||
|
self.autoregressive_batch_size = autoregressive_batch_size
|
||||||
|
self.tokenizer = VoiceBpeTokenizer()
|
||||||
|
download_models()
|
||||||
|
|
||||||
|
self.autoregressive = UnifiedVoice(max_mel_tokens=300, max_text_tokens=200, max_conditioning_inputs=2, layers=30,
|
||||||
|
model_dim=1024,
|
||||||
|
heads=16, number_text_tokens=256, start_text_token=255, checkpointing=False,
|
||||||
|
train_solo_embeddings=False,
|
||||||
|
average_conditioning_embeddings=True).cpu().eval()
|
||||||
|
self.autoregressive.load_state_dict(torch.load('.models/autoregressive.pth'))
|
||||||
|
|
||||||
|
self.clip = VoiceCLIP(dim_text=512, dim_speech=512, dim_latent=512, num_text_tokens=256, text_enc_depth=12,
|
||||||
|
text_seq_len=350, text_heads=8,
|
||||||
|
num_speech_tokens=8192, speech_enc_depth=12, speech_heads=8, speech_seq_len=430,
|
||||||
|
use_xformers=True).cpu().eval()
|
||||||
|
self.clip.load_state_dict(torch.load('.models/clip.pth'))
|
||||||
|
|
||||||
|
self.diffusion = DiffusionTts(model_channels=512, in_channels=100, out_channels=200, in_latent_channels=1024,
|
||||||
|
channel_mult=[1, 2, 3, 4], num_res_blocks=[3, 3, 3, 3],
|
||||||
|
token_conditioning_resolutions=[1, 4, 8],
|
||||||
|
dropout=0, attention_resolutions=[4, 8], num_heads=8, kernel_size=3, scale_factor=2,
|
||||||
|
time_embed_dim_multiplier=4, unconditioned_percentage=0, conditioning_dim_factor=2,
|
||||||
|
conditioning_expansion=1).cpu().eval()
|
||||||
|
self.diffusion.load_state_dict(torch.load('.models/diffusion.pth'))
|
||||||
|
|
||||||
|
self.vocoder = UnivNetGenerator().cpu()
|
||||||
|
self.vocoder.load_state_dict(torch.load('.models/vocoder.pth')['model_g'])
|
||||||
|
self.vocoder.eval(inference=True)
|
||||||
|
|
||||||
|
def tts(self, text, voice_samples, num_autoregressive_samples=512, k=1, diffusion_iterations=100, cond_free=True):
|
||||||
|
text = torch.IntTensor(self.tokenizer.encode(text)).unsqueeze(0).cuda()
|
||||||
|
text = F.pad(text, (0, 1)) # This may not be necessary.
|
||||||
|
|
||||||
|
conds = []
|
||||||
|
if not isinstance(voice_samples, list):
|
||||||
|
voice_samples = [voice_samples]
|
||||||
|
for vs in voice_samples:
|
||||||
|
conds.append(load_conditioning(vs))
|
||||||
|
conds = torch.stack(conds, dim=1)
|
||||||
|
cond_diffusion = voice_samples[0].cuda()
|
||||||
|
# The diffusion model expects = 88200 conditioning samples.
|
||||||
|
if cond_diffusion.shape[-1] < 88200:
|
||||||
|
cond_diffusion = F.pad(cond_diffusion, (0, 88200-cond_diffusion.shape[-1]))
|
||||||
|
else:
|
||||||
|
cond_diffusion = cond_diffusion[:, :88200]
|
||||||
|
|
||||||
|
diffuser = load_discrete_vocoder_diffuser(desired_diffusion_steps=diffusion_iterations, cond_free=cond_free)
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
samples = []
|
||||||
|
num_batches = num_autoregressive_samples // self.autoregressive_batch_size
|
||||||
|
stop_mel_token = self.autoregressive.stop_mel_token
|
||||||
|
self.autoregressive = self.autoregressive.cuda()
|
||||||
|
for b in tqdm(range(num_batches)):
|
||||||
|
codes = self.autoregressive.inference_speech(conds, text, num_beams=1, repetition_penalty=1.0, do_sample=True,
|
||||||
|
top_k=50, top_p=.95,
|
||||||
|
temperature=.9,
|
||||||
|
num_return_sequences=self.autoregressive_batch_size,
|
||||||
|
length_penalty=1)
|
||||||
|
padding_needed = 250 - codes.shape[1]
|
||||||
|
codes = F.pad(codes, (0, padding_needed), value=stop_mel_token)
|
||||||
|
samples.append(codes)
|
||||||
|
self.autoregressive = self.autoregressive.cpu()
|
||||||
|
|
||||||
|
clip_results = []
|
||||||
|
self.clip = self.clip.cuda()
|
||||||
|
for batch in samples:
|
||||||
|
for i in range(batch.shape[0]):
|
||||||
|
batch[i] = fix_autoregressive_output(batch[i], stop_mel_token)
|
||||||
|
clip_results.append(self.clip(text.repeat(batch.shape[0], 1), batch, return_loss=False))
|
||||||
|
clip_results = torch.cat(clip_results, dim=0)
|
||||||
|
samples = torch.cat(samples, dim=0)
|
||||||
|
best_results = samples[torch.topk(clip_results, k=k).indices]
|
||||||
|
self.clip = self.clip.cpu()
|
||||||
|
del samples
|
||||||
|
|
||||||
|
print("Performing vocoding..")
|
||||||
|
wav_candidates = []
|
||||||
|
self.diffusion = self.diffusion.cuda()
|
||||||
|
self.vocoder = self.vocoder.cuda()
|
||||||
|
for b in range(best_results.shape[0]):
|
||||||
|
code = best_results[b].unsqueeze(0)
|
||||||
|
mel = do_spectrogram_diffusion(self.diffusion, diffuser, code, cond_diffusion, mean=False)
|
||||||
|
wav = self.vocoder.inference(mel)
|
||||||
|
wav_candidates.append(wav.cpu())
|
||||||
|
self.diffusion = self.diffusion.cpu()
|
||||||
|
self.vocoder = self.vocoder.cpu()
|
||||||
|
|
||||||
|
if len(wav_candidates) > 1:
|
||||||
|
return wav_candidates
|
||||||
|
return wav_candidates[0]
|
14
do_tts.py
14
do_tts.py
|
@ -138,8 +138,8 @@ if __name__ == '__main__':
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument('-text', type=str, help='Text to speak.', default="I am a language model that has learned to speak.")
|
parser.add_argument('-text', type=str, help='Text to speak.', default="I am a language model that has learned to speak.")
|
||||||
parser.add_argument('-voice', type=str, help='Use a preset conditioning voice (defined above). Overrides cond_path.', default='dotrice,harris,lescault,otto,atkins,grace,kennard,mol')
|
parser.add_argument('-voice', type=str, help='Use a preset conditioning voice (defined above). Overrides cond_path.', default='dotrice,harris,lescault,otto,atkins,grace,kennard,mol')
|
||||||
parser.add_argument('-num_samples', type=int, help='How many total outputs the autoregressive transformer should produce.', default=1024)
|
parser.add_argument('-num_samples', type=int, help='How many total outputs the autoregressive transformer should produce.', default=512)
|
||||||
parser.add_argument('-num_batches', type=int, help='How many batches those samples should be produced over.', default=32)
|
parser.add_argument('-num_batches', type=int, help='How many batches those samples should be produced over.', default=16)
|
||||||
parser.add_argument('-num_diffusion_samples', type=int, help='Number of outputs that progress to the diffusion stage.', default=16)
|
parser.add_argument('-num_diffusion_samples', type=int, help='Number of outputs that progress to the diffusion stage.', default=16)
|
||||||
parser.add_argument('-output_path', type=str, help='Where to store outputs.', default='results/')
|
parser.add_argument('-output_path', type=str, help='Where to store outputs.', default='results/')
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
@ -179,19 +179,15 @@ if __name__ == '__main__':
|
||||||
del autoregressive
|
del autoregressive
|
||||||
|
|
||||||
print("Loading CLIP..")
|
print("Loading CLIP..")
|
||||||
clip = VoiceCLIP(dim_text=512, dim_speech=512, dim_latent=512, num_text_tokens=256, text_enc_depth=8, text_seq_len=120, text_heads=8,
|
clip = VoiceCLIP(dim_text=512, dim_speech=512, dim_latent=512, num_text_tokens=256, text_enc_depth=12, text_seq_len=350, text_heads=8,
|
||||||
num_speech_tokens=8192, speech_enc_depth=10, speech_heads=8, speech_seq_len=250).cuda().eval()
|
num_speech_tokens=8192, speech_enc_depth=12, speech_heads=8, speech_seq_len=430, use_xformers=True).cuda().eval()
|
||||||
clip.load_state_dict(torch.load('.models/clip.pth'))
|
clip.load_state_dict(torch.load('.models/clip.pth'))
|
||||||
print("Performing CLIP filtering..")
|
print("Performing CLIP filtering..")
|
||||||
clip_results = []
|
clip_results = []
|
||||||
for batch in samples:
|
for batch in samples:
|
||||||
for i in range(batch.shape[0]):
|
for i in range(batch.shape[0]):
|
||||||
batch[i] = fix_autoregressive_output(batch[i], stop_mel_token)
|
batch[i] = fix_autoregressive_output(batch[i], stop_mel_token)
|
||||||
text = text[:, :120] # Ugly hack to fix the fact that I didn't train CLIP to handle long enough text.
|
clip_results.append(clip(text.repeat(batch.shape[0], 1), batch, return_loss=False))
|
||||||
clip_results.append(clip(text.repeat(batch.shape[0], 1),
|
|
||||||
torch.full((batch.shape[0],), fill_value=text.shape[1]-1, dtype=torch.long, device='cuda'),
|
|
||||||
batch, torch.full((batch.shape[0],), fill_value=batch.shape[1]*1024, dtype=torch.long, device='cuda'),
|
|
||||||
return_loss=False))
|
|
||||||
clip_results = torch.cat(clip_results, dim=0)
|
clip_results = torch.cat(clip_results, dim=0)
|
||||||
samples = torch.cat(samples, dim=0)
|
samples = torch.cat(samples, dim=0)
|
||||||
best_results = samples[torch.topk(clip_results, k=args.num_diffusion_samples).indices]
|
best_results = samples[torch.topk(clip_results, k=args.num_diffusion_samples).indices]
|
||||||
|
|
33
eval_multiple.py
Normal file
33
eval_multiple.py
Normal file
|
@ -0,0 +1,33 @@
|
||||||
|
import os
|
||||||
|
|
||||||
|
import torchaudio
|
||||||
|
|
||||||
|
from api import TextToSpeech
|
||||||
|
from utils.audio import load_audio
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
fname = 'Y:\\libritts\\test-clean\\transcribed-brief-w2v.tsv'
|
||||||
|
outpath = 'D:\\tmp\\tortoise-tts-eval\\baseline'
|
||||||
|
outpath_real = 'D:\\tmp\\tortoise-tts-eval\\real'
|
||||||
|
|
||||||
|
os.makedirs(outpath, exist_ok=True)
|
||||||
|
os.makedirs(outpath_real, exist_ok=True)
|
||||||
|
with open(fname, 'r', encoding='utf-8') as f:
|
||||||
|
lines = [l.strip().split('\t') for l in f.readlines()]
|
||||||
|
|
||||||
|
recorder = open(os.path.join(outpath, 'transcript.tsv'), 'w', encoding='utf-8')
|
||||||
|
tts = TextToSpeech()
|
||||||
|
for e, line in enumerate(lines):
|
||||||
|
transcript = line[0]
|
||||||
|
if len(transcript) > 120:
|
||||||
|
continue # We need to support this, but cannot yet.
|
||||||
|
path = os.path.join(os.path.dirname(fname), line[1])
|
||||||
|
cond_audio = load_audio(path, 22050)
|
||||||
|
torchaudio.save(os.path.join(outpath_real, os.path.basename(line[1])), cond_audio, 22050)
|
||||||
|
sample = tts.tts(transcript, [cond_audio, cond_audio], num_autoregressive_samples=512, k=1, diffusion_iterations=200, cond_free=True)
|
||||||
|
down = torchaudio.functional.resample(sample, 24000, 22050)
|
||||||
|
fout_path = os.path.join(outpath, os.path.basename(line[1]))
|
||||||
|
torchaudio.save(fout_path, down.squeeze(0), 22050)
|
||||||
|
recorder.write(f'{transcript}\t{fout_path}\n')
|
||||||
|
recorder.flush()
|
||||||
|
recorder.close()
|
|
@ -1,9 +1,11 @@
|
||||||
|
import functools
|
||||||
import math
|
import math
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
import torchaudio
|
import torchaudio
|
||||||
|
from x_transformers import ContinuousTransformerWrapper
|
||||||
|
|
||||||
|
|
||||||
def zero_module(module):
|
def zero_module(module):
|
||||||
|
@ -316,4 +318,46 @@ class TorchMelSpectrogram(nn.Module):
|
||||||
if self.mel_norms is not None:
|
if self.mel_norms is not None:
|
||||||
self.mel_norms = self.mel_norms.to(mel.device)
|
self.mel_norms = self.mel_norms.to(mel.device)
|
||||||
mel = mel / self.mel_norms.unsqueeze(0).unsqueeze(-1)
|
mel = mel / self.mel_norms.unsqueeze(0).unsqueeze(-1)
|
||||||
return mel
|
return mel
|
||||||
|
|
||||||
|
|
||||||
|
class CheckpointedLayer(nn.Module):
|
||||||
|
"""
|
||||||
|
Wraps a module. When forward() is called, passes kwargs that require_grad through torch.checkpoint() and bypasses
|
||||||
|
checkpoint for all other args.
|
||||||
|
"""
|
||||||
|
def __init__(self, wrap):
|
||||||
|
super().__init__()
|
||||||
|
self.wrap = wrap
|
||||||
|
|
||||||
|
def forward(self, x, *args, **kwargs):
|
||||||
|
for k, v in kwargs.items():
|
||||||
|
assert not (isinstance(v, torch.Tensor) and v.requires_grad) # This would screw up checkpointing.
|
||||||
|
partial = functools.partial(self.wrap, **kwargs)
|
||||||
|
return torch.utils.checkpoint.checkpoint(partial, x, *args)
|
||||||
|
|
||||||
|
|
||||||
|
class CheckpointedXTransformerEncoder(nn.Module):
|
||||||
|
"""
|
||||||
|
Wraps a ContinuousTransformerWrapper and applies CheckpointedLayer to each layer and permutes from channels-mid
|
||||||
|
to channels-last that XTransformer expects.
|
||||||
|
"""
|
||||||
|
def __init__(self, needs_permute=True, exit_permute=True, checkpoint=True, **xtransformer_kwargs):
|
||||||
|
super().__init__()
|
||||||
|
self.transformer = ContinuousTransformerWrapper(**xtransformer_kwargs)
|
||||||
|
self.needs_permute = needs_permute
|
||||||
|
self.exit_permute = exit_permute
|
||||||
|
|
||||||
|
if not checkpoint:
|
||||||
|
return
|
||||||
|
for i in range(len(self.transformer.attn_layers.layers)):
|
||||||
|
n, b, r = self.transformer.attn_layers.layers[i]
|
||||||
|
self.transformer.attn_layers.layers[i] = nn.ModuleList([n, CheckpointedLayer(b), r])
|
||||||
|
|
||||||
|
def forward(self, x, **kwargs):
|
||||||
|
if self.needs_permute:
|
||||||
|
x = x.permute(0,2,1)
|
||||||
|
h = self.transformer(x, **kwargs)
|
||||||
|
if self.exit_permute:
|
||||||
|
h = h.permute(0,2,1)
|
||||||
|
return h
|
|
@ -15,7 +15,8 @@ from torch.nn import Linear
|
||||||
from torch.utils.checkpoint import checkpoint
|
from torch.utils.checkpoint import checkpoint
|
||||||
from x_transformers import ContinuousTransformerWrapper, Encoder
|
from x_transformers import ContinuousTransformerWrapper, Encoder
|
||||||
|
|
||||||
from models.arch_util import normalization, zero_module, Downsample, Upsample, AudioMiniEncoder, AttentionBlock
|
from models.arch_util import normalization, zero_module, Downsample, Upsample, AudioMiniEncoder, AttentionBlock, \
|
||||||
|
CheckpointedXTransformerEncoder
|
||||||
|
|
||||||
|
|
||||||
def is_latent(t):
|
def is_latent(t):
|
||||||
|
@ -157,43 +158,6 @@ class ResBlock(TimestepBlock):
|
||||||
return self.skip_connection(x) + h
|
return self.skip_connection(x) + h
|
||||||
|
|
||||||
|
|
||||||
class CheckpointedLayer(nn.Module):
|
|
||||||
"""
|
|
||||||
Wraps a module. When forward() is called, passes kwargs that require_grad through torch.checkpoint() and bypasses
|
|
||||||
checkpoint for all other args.
|
|
||||||
"""
|
|
||||||
def __init__(self, wrap):
|
|
||||||
super().__init__()
|
|
||||||
self.wrap = wrap
|
|
||||||
|
|
||||||
def forward(self, x, *args, **kwargs):
|
|
||||||
for k, v in kwargs.items():
|
|
||||||
assert not (isinstance(v, torch.Tensor) and v.requires_grad) # This would screw up checkpointing.
|
|
||||||
partial = functools.partial(self.wrap, **kwargs)
|
|
||||||
return torch.utils.checkpoint.checkpoint(partial, x, *args)
|
|
||||||
|
|
||||||
|
|
||||||
class CheckpointedXTransformerEncoder(nn.Module):
|
|
||||||
"""
|
|
||||||
Wraps a ContinuousTransformerWrapper and applies CheckpointedLayer to each layer and permutes from channels-mid
|
|
||||||
to channels-last that XTransformer expects.
|
|
||||||
"""
|
|
||||||
def __init__(self, needs_permute=True, **xtransformer_kwargs):
|
|
||||||
super().__init__()
|
|
||||||
self.transformer = ContinuousTransformerWrapper(**xtransformer_kwargs)
|
|
||||||
self.needs_permute = needs_permute
|
|
||||||
|
|
||||||
for i in range(len(self.transformer.attn_layers.layers)):
|
|
||||||
n, b, r = self.transformer.attn_layers.layers[i]
|
|
||||||
self.transformer.attn_layers.layers[i] = nn.ModuleList([n, CheckpointedLayer(b), r])
|
|
||||||
|
|
||||||
def forward(self, x, **kwargs):
|
|
||||||
if self.needs_permute:
|
|
||||||
x = x.permute(0,2,1)
|
|
||||||
h = self.transformer(x, **kwargs)
|
|
||||||
return h.permute(0,2,1)
|
|
||||||
|
|
||||||
|
|
||||||
class DiffusionTts(nn.Module):
|
class DiffusionTts(nn.Module):
|
||||||
"""
|
"""
|
||||||
The full UNet model with attention and timestep embedding.
|
The full UNet model with attention and timestep embedding.
|
||||||
|
|
|
@ -2,6 +2,9 @@ import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
from torch import einsum
|
from torch import einsum
|
||||||
|
from x_transformers import Encoder
|
||||||
|
|
||||||
|
from models.arch_util import CheckpointedXTransformerEncoder
|
||||||
from models.transformer import Transformer
|
from models.transformer import Transformer
|
||||||
|
|
||||||
|
|
||||||
|
@ -13,7 +16,6 @@ def masked_mean(t, mask, dim = 1):
|
||||||
t = t.masked_fill(~mask[:, :, None], 0.)
|
t = t.masked_fill(~mask[:, :, None], 0.)
|
||||||
return t.sum(dim = 1) / mask.sum(dim = 1)[..., None]
|
return t.sum(dim = 1) / mask.sum(dim = 1)[..., None]
|
||||||
|
|
||||||
|
|
||||||
class VoiceCLIP(nn.Module):
|
class VoiceCLIP(nn.Module):
|
||||||
"""
|
"""
|
||||||
CLIP model retrofitted for performing contrastive evaluation between tokenized audio data and the corresponding
|
CLIP model retrofitted for performing contrastive evaluation between tokenized audio data and the corresponding
|
||||||
|
@ -39,40 +41,69 @@ class VoiceCLIP(nn.Module):
|
||||||
text_mask_percentage=0,
|
text_mask_percentage=0,
|
||||||
voice_mask_percentage=0,
|
voice_mask_percentage=0,
|
||||||
wav_token_compression=1024,
|
wav_token_compression=1024,
|
||||||
|
use_xformers=False,
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.text_emb = nn.Embedding(num_text_tokens, dim_text)
|
self.text_emb = nn.Embedding(num_text_tokens, dim_text)
|
||||||
self.text_pos_emb = nn.Embedding(text_seq_len, dim_text)
|
|
||||||
self.text_transformer = Transformer(causal=False, seq_len=text_seq_len, dim=dim_text, depth=text_enc_depth,
|
|
||||||
heads=text_heads)
|
|
||||||
self.to_text_latent = nn.Linear(dim_text, dim_latent, bias=False)
|
self.to_text_latent = nn.Linear(dim_text, dim_latent, bias=False)
|
||||||
|
|
||||||
self.speech_emb = nn.Embedding(num_speech_tokens, dim_speech)
|
self.speech_emb = nn.Embedding(num_speech_tokens, dim_speech)
|
||||||
self.speech_pos_emb = nn.Embedding(num_speech_tokens, dim_speech)
|
|
||||||
self.speech_transformer = Transformer(causal=False, seq_len=speech_seq_len, dim=dim_speech,
|
|
||||||
depth=speech_enc_depth, heads=speech_heads)
|
|
||||||
self.to_speech_latent = nn.Linear(dim_speech, dim_latent, bias=False)
|
self.to_speech_latent = nn.Linear(dim_speech, dim_latent, bias=False)
|
||||||
|
|
||||||
|
if use_xformers:
|
||||||
|
self.text_transformer = CheckpointedXTransformerEncoder(
|
||||||
|
needs_permute=False,
|
||||||
|
exit_permute=False,
|
||||||
|
max_seq_len=-1,
|
||||||
|
use_pos_emb=False,
|
||||||
|
attn_layers=Encoder(
|
||||||
|
dim=dim_text,
|
||||||
|
depth=text_enc_depth,
|
||||||
|
heads=text_heads,
|
||||||
|
ff_dropout=.1,
|
||||||
|
ff_mult=2,
|
||||||
|
attn_dropout=.1,
|
||||||
|
use_rmsnorm=True,
|
||||||
|
ff_glu=True,
|
||||||
|
rotary_pos_emb=True,
|
||||||
|
))
|
||||||
|
self.speech_transformer = CheckpointedXTransformerEncoder(
|
||||||
|
needs_permute=False,
|
||||||
|
exit_permute=False,
|
||||||
|
max_seq_len=-1,
|
||||||
|
use_pos_emb=False,
|
||||||
|
attn_layers=Encoder(
|
||||||
|
dim=dim_speech,
|
||||||
|
depth=speech_enc_depth,
|
||||||
|
heads=speech_heads,
|
||||||
|
ff_dropout=.1,
|
||||||
|
ff_mult=2,
|
||||||
|
attn_dropout=.1,
|
||||||
|
use_rmsnorm=True,
|
||||||
|
ff_glu=True,
|
||||||
|
rotary_pos_emb=True,
|
||||||
|
))
|
||||||
|
else:
|
||||||
|
self.text_transformer = Transformer(causal=False, seq_len=text_seq_len, dim=dim_text, depth=text_enc_depth,
|
||||||
|
heads=text_heads)
|
||||||
|
self.speech_transformer = Transformer(causal=False, seq_len=speech_seq_len, dim=dim_speech,
|
||||||
|
depth=speech_enc_depth, heads=speech_heads)
|
||||||
|
|
||||||
self.temperature = nn.Parameter(torch.tensor(1.))
|
self.temperature = nn.Parameter(torch.tensor(1.))
|
||||||
self.text_mask_percentage = text_mask_percentage
|
self.text_mask_percentage = text_mask_percentage
|
||||||
self.voice_mask_percentage = voice_mask_percentage
|
self.voice_mask_percentage = voice_mask_percentage
|
||||||
self.wav_token_compression = wav_token_compression
|
self.wav_token_compression = wav_token_compression
|
||||||
|
self.xformers = use_xformers
|
||||||
|
if not use_xformers:
|
||||||
|
self.text_pos_emb = nn.Embedding(text_seq_len, dim_text)
|
||||||
|
self.speech_pos_emb = nn.Embedding(num_speech_tokens, dim_speech)
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
self,
|
self,
|
||||||
text,
|
text,
|
||||||
text_lengths,
|
|
||||||
speech_tokens,
|
speech_tokens,
|
||||||
wav_lengths,
|
|
||||||
return_loss=False
|
return_loss=False
|
||||||
):
|
):
|
||||||
# This model will receive micro-batches with a ton of padding for both the text and MELs. Ameliorate this by
|
|
||||||
# chopping the inputs by the maximum actual length.
|
|
||||||
max_text_len = text_lengths.max()
|
|
||||||
text = text[:, :max_text_len]
|
|
||||||
max_mel_len = wav_lengths.max() // self.wav_token_compression
|
|
||||||
speech_tokens = speech_tokens[:, :max_mel_len]
|
|
||||||
|
|
||||||
b, device = text.shape[0], text.device
|
b, device = text.shape[0], text.device
|
||||||
if self.training:
|
if self.training:
|
||||||
text_mask = torch.rand_like(text.float()) > self.text_mask_percentage
|
text_mask = torch.rand_like(text.float()) > self.text_mask_percentage
|
||||||
|
@ -82,10 +113,11 @@ class VoiceCLIP(nn.Module):
|
||||||
voice_mask = torch.ones_like(speech_tokens.float()).bool()
|
voice_mask = torch.ones_like(speech_tokens.float()).bool()
|
||||||
|
|
||||||
text_emb = self.text_emb(text)
|
text_emb = self.text_emb(text)
|
||||||
text_emb += self.text_pos_emb(torch.arange(text.shape[1], device=device))
|
|
||||||
|
|
||||||
speech_emb = self.speech_emb(speech_tokens)
|
speech_emb = self.speech_emb(speech_tokens)
|
||||||
speech_emb += self.speech_pos_emb(torch.arange(speech_emb.shape[1], device=device))
|
|
||||||
|
if not self.xformers:
|
||||||
|
text_emb += self.text_pos_emb(torch.arange(text.shape[1], device=device))
|
||||||
|
speech_emb += self.speech_pos_emb(torch.arange(speech_emb.shape[1], device=device))
|
||||||
|
|
||||||
enc_text = self.text_transformer(text_emb, mask=text_mask)
|
enc_text = self.text_transformer(text_emb, mask=text_mask)
|
||||||
enc_speech = self.speech_transformer(speech_emb, mask=voice_mask)
|
enc_speech = self.speech_transformer(speech_emb, mask=voice_mask)
|
||||||
|
|
Loading…
Reference in New Issue
Block a user