commit
ce30b5bbe5
259
scripts/tortoise_tts.py
Executable file
259
scripts/tortoise_tts.py
Executable file
|
@ -0,0 +1,259 @@
|
||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import tempfile
|
||||||
|
import time
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torchaudio
|
||||||
|
|
||||||
|
from tortoise.api import MODELS_DIR, TextToSpeech
|
||||||
|
from tortoise.utils.audio import get_voices, load_voices, load_audio
|
||||||
|
from tortoise.utils.text import split_and_recombine_text
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
description='TorToiSe is a text-to-speech program that is capable of synthesizing speech '
|
||||||
|
'in multiple voices with realistic prosody and intonation.')
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
'text', type=str, nargs='*',
|
||||||
|
help='Text to speak. If omitted, text is read from stdin.')
|
||||||
|
parser.add_argument(
|
||||||
|
'-v, --voice', type=str, default='random', metavar='VOICE', dest='voice',
|
||||||
|
help='Selects the voice to use for generation. Use the & character to join two voices together. '
|
||||||
|
'Use a comma to perform inference on multiple voices. Set to "all" to use all available voices. '
|
||||||
|
'Note that multiple voices require the --output-dir option to be set.')
|
||||||
|
parser.add_argument(
|
||||||
|
'-V, --voices-dir', metavar='VOICES_DIR', type=str, dest='voices_dir',
|
||||||
|
help='Path to directory containing extra voices to be loaded. Use a comma to specify multiple directories.')
|
||||||
|
parser.add_argument(
|
||||||
|
'-p, --preset', type=str, default='fast', choices=['ultra_fast', 'fast', 'standard', 'high_quality'], dest='preset',
|
||||||
|
help='Which voice quality preset to use.')
|
||||||
|
parser.add_argument(
|
||||||
|
'-q, --quiet', default=False, action='store_true', dest='quiet',
|
||||||
|
help='Suppress all output.')
|
||||||
|
|
||||||
|
output_group = parser.add_mutually_exclusive_group(required=True)
|
||||||
|
output_group.add_argument(
|
||||||
|
'-l, --list-voices', default=False, action='store_true', dest='list_voices',
|
||||||
|
help='List available voices and exit.')
|
||||||
|
output_group.add_argument(
|
||||||
|
'-P, --play', action='store_true', dest='play',
|
||||||
|
help='Play the audio (requires pydub).')
|
||||||
|
output_group.add_argument(
|
||||||
|
'-o, --output', type=str, metavar='OUTPUT', dest='output',
|
||||||
|
help='Save the audio to a file.')
|
||||||
|
output_group.add_argument(
|
||||||
|
'-O, --output-dir', type=str, metavar='OUTPUT_DIR', dest='output_dir',
|
||||||
|
help='Save the audio to a directory as individual segments.')
|
||||||
|
|
||||||
|
multi_output_group = parser.add_argument_group('multi-output options (requires --output-dir)')
|
||||||
|
multi_output_group.add_argument(
|
||||||
|
'--candidates', type=int, default=1,
|
||||||
|
help='How many output candidates to produce per-voice. Note that only the first candidate is used in the combined output.')
|
||||||
|
multi_output_group.add_argument(
|
||||||
|
'--regenerate', type=str, default=None,
|
||||||
|
help='Comma-separated list of clip numbers to re-generate.')
|
||||||
|
multi_output_group.add_argument(
|
||||||
|
'--skip-existing', action='store_true',
|
||||||
|
help='Set to skip re-generating existing clips.')
|
||||||
|
|
||||||
|
advanced_group = parser.add_argument_group('advanced options')
|
||||||
|
advanced_group.add_argument(
|
||||||
|
'--produce-debug-state', default=False, action='store_true',
|
||||||
|
help='Whether or not to produce debug_states in current directory, which can aid in reproducing problems.')
|
||||||
|
advanced_group.add_argument(
|
||||||
|
'--seed', type=int, default=None,
|
||||||
|
help='Random seed which can be used to reproduce results.')
|
||||||
|
advanced_group.add_argument(
|
||||||
|
'--models-dir', type=str, default=MODELS_DIR,
|
||||||
|
help='Where to find pretrained model checkpoints. Tortoise automatically downloads these to '
|
||||||
|
'~/.cache/tortoise/.models, so this should only be specified if you have custom checkpoints.')
|
||||||
|
advanced_group.add_argument(
|
||||||
|
'--text-split', type=str, default=None,
|
||||||
|
help='How big chunks to split the text into, in the format <desired_length>,<max_length>.')
|
||||||
|
advanced_group.add_argument(
|
||||||
|
'--disable-redaction', default=False, action='store_true',
|
||||||
|
help='Normally text enclosed in brackets are automatically redacted from the spoken output '
|
||||||
|
'(but are still rendered by the model), this can be used for prompt engineering. '
|
||||||
|
'Set this to disable this behavior.')
|
||||||
|
|
||||||
|
tuning_group = parser.add_argument_group('tuning options (overrides preset settings)')
|
||||||
|
tuning_group.add_argument(
|
||||||
|
'--num-autoregressive-samples', type=int, default=None,
|
||||||
|
help='Number of samples taken from the autoregressive model, all of which are filtered using CLVP. '
|
||||||
|
'As TorToiSe is a probabilistic model, more samples means a higher probability of creating something "great".')
|
||||||
|
tuning_group.add_argument(
|
||||||
|
'--temperature', type=float, default=None,
|
||||||
|
help='The softmax temperature of the autoregressive model.')
|
||||||
|
tuning_group.add_argument(
|
||||||
|
'--length-penalty', type=float, default=None,
|
||||||
|
help='A length penalty applied to the autoregressive decoder. Higher settings causes the model to produce more terse outputs.')
|
||||||
|
tuning_group.add_argument(
|
||||||
|
'--repetition-penalty', type=float, default=None,
|
||||||
|
help='A penalty that prevents the autoregressive decoder from repeating itself during decoding. '
|
||||||
|
'Can be used to reduce the incidence of long silences or "uhhhhhhs", etc.')
|
||||||
|
tuning_group.add_argument(
|
||||||
|
'--top-p', type=float, default=None,
|
||||||
|
help='P value used in nucleus sampling. 0 to 1. Lower values mean the decoder produces more "likely" (aka boring) outputs.')
|
||||||
|
tuning_group.add_argument(
|
||||||
|
'--max-mel-tokens', type=int, default=None,
|
||||||
|
help='Restricts the output length. 1 to 600. Each unit is 1/20 of a second.')
|
||||||
|
tuning_group.add_argument(
|
||||||
|
'--cvvp-amount', type=float, default=None,
|
||||||
|
help='How much the CVVP model should influence the output.'
|
||||||
|
'Increasing this can in some cases reduce the likelyhood of multiple speakers.')
|
||||||
|
tuning_group.add_argument(
|
||||||
|
'--diffusion-iterations', type=int, default=None,
|
||||||
|
help='Number of diffusion steps to perform. More steps means the network has more chances to iteratively'
|
||||||
|
'refine the output, which should theoretically mean a higher quality output. '
|
||||||
|
'Generally a value above 250 is not noticeably better, however.')
|
||||||
|
tuning_group.add_argument(
|
||||||
|
'--cond-free', type=bool, default=None,
|
||||||
|
help='Whether or not to perform conditioning-free diffusion. Conditioning-free diffusion performs two forward passes for '
|
||||||
|
'each diffusion step: one with the outputs of the autoregressive model and one with no conditioning priors. The output '
|
||||||
|
'of the two is blended according to the cond_free_k value below. Conditioning-free diffusion is the real deal, and '
|
||||||
|
'dramatically improves realism.')
|
||||||
|
tuning_group.add_argument(
|
||||||
|
'--cond-free-k', type=float, default=None,
|
||||||
|
help='Knob that determines how to balance the conditioning free signal with the conditioning-present signal. [0,inf]. '
|
||||||
|
'As cond_free_k increases, the output becomes dominated by the conditioning-free signal. '
|
||||||
|
'Formula is: output=cond_present_output*(cond_free_k+1)-cond_absenct_output*cond_free_k')
|
||||||
|
tuning_group.add_argument(
|
||||||
|
'--diffusion-temperature', type=float, default=None,
|
||||||
|
help='Controls the variance of the noise fed into the diffusion model. [0,1]. Values at 0 '
|
||||||
|
'are the "mean" prediction of the diffusion network and will sound bland and smeared. ')
|
||||||
|
|
||||||
|
usage_examples = f'''
|
||||||
|
Examples:
|
||||||
|
|
||||||
|
Read text using random voice and place it in a file:
|
||||||
|
|
||||||
|
{parser.prog} -o hello.wav "Hello, how are you?"
|
||||||
|
|
||||||
|
Read text from stdin and play it using the tom voice:
|
||||||
|
|
||||||
|
echo "Say it like you mean it!" | {parser.prog} -P -v tom
|
||||||
|
|
||||||
|
Read a text file using multiple voices and save the audio clips to a directory:
|
||||||
|
|
||||||
|
{parser.prog} -O /tmp/tts-results -v tom,emma <textfile.txt
|
||||||
|
'''
|
||||||
|
|
||||||
|
try:
|
||||||
|
args = parser.parse_args()
|
||||||
|
except SystemExit as e:
|
||||||
|
if e.code == 0:
|
||||||
|
print(usage_examples)
|
||||||
|
sys.exit(e.code)
|
||||||
|
|
||||||
|
extra_voice_dirs = args.voices_dir.split(',') if args.voices_dir else []
|
||||||
|
all_voices = sorted(get_voices(extra_voice_dirs))
|
||||||
|
|
||||||
|
if args.list_voices:
|
||||||
|
for v in all_voices:
|
||||||
|
print(v)
|
||||||
|
sys.exit(0)
|
||||||
|
|
||||||
|
selected_voices = all_voices if args.voice == 'all' else args.voice.split(',')
|
||||||
|
selected_voices = [v.split('&') if '&' in v else [v] for v in selected_voices]
|
||||||
|
for voices in selected_voices:
|
||||||
|
for v in voices:
|
||||||
|
if v != 'random' and v not in all_voices:
|
||||||
|
parser.error(f'voice {v} not available, use --list-voices to see available voices.')
|
||||||
|
|
||||||
|
if len(args.text) == 0:
|
||||||
|
text = ''
|
||||||
|
for line in sys.stdin:
|
||||||
|
text += line
|
||||||
|
else:
|
||||||
|
text = ' '.join(args.text)
|
||||||
|
text = text.strip()
|
||||||
|
if args.text_split:
|
||||||
|
desired_length, max_length = [int(x) for x in args.text_split.split(',')]
|
||||||
|
if desired_length > max_length:
|
||||||
|
parser.error(f'--text-split: desired_length ({desired_length}) must be <= max_length ({max_length})')
|
||||||
|
texts = split_and_recombine_text(text, desired_length, max_length)
|
||||||
|
else:
|
||||||
|
texts = split_and_recombine_text(text)
|
||||||
|
if len(texts) == 0:
|
||||||
|
parser.error('no text provided')
|
||||||
|
|
||||||
|
if args.output_dir:
|
||||||
|
os.makedirs(args.output_dir, exist_ok=True)
|
||||||
|
else:
|
||||||
|
if len(selected_voices) > 1:
|
||||||
|
parser.error('cannot have multiple voices without --output-dir"')
|
||||||
|
if args.candiates > 1:
|
||||||
|
parser.error('cannot have multiple candidates without --output-dir"')
|
||||||
|
|
||||||
|
# error out early if pydub isn't installed
|
||||||
|
if args.play:
|
||||||
|
try:
|
||||||
|
import pydub
|
||||||
|
import pydub.playback
|
||||||
|
except ImportError:
|
||||||
|
parser.error('--play requires pydub to be installed, which can be done with "pip install pydub"')
|
||||||
|
|
||||||
|
seed = int(time.time()) if args.seed is None else args.seed
|
||||||
|
if not args.quiet:
|
||||||
|
print('Loading tts...')
|
||||||
|
tts = TextToSpeech(models_dir=args.models_dir, enable_redaction=not args.disable_redaction)
|
||||||
|
gen_settings = {
|
||||||
|
'use_deterministic_seed': seed,
|
||||||
|
'varbose': not args.quiet,
|
||||||
|
'k': args.candidates,
|
||||||
|
'preset': args.preset,
|
||||||
|
}
|
||||||
|
tuning_options = [
|
||||||
|
'num_autoregressive_samples', 'temperature', 'length_penalty', 'repetition_penalty', 'top_p',
|
||||||
|
'max_mel_tokens', 'cvvp_amount', 'diffusion_iterations', 'cond_free', 'cond_free_k', 'diffusion_temperature']
|
||||||
|
for option in tuning_options:
|
||||||
|
if getattr(args, option) is not None:
|
||||||
|
gen_settings[option] = getattr(args, option)
|
||||||
|
total_clips = len(texts) * len(selected_voices)
|
||||||
|
regenerate_clips = [int(x) for x in args.regenerate.split(',')] if args.regenerate else None
|
||||||
|
for voice_idx, voice in enumerate(selected_voices):
|
||||||
|
audio_parts = []
|
||||||
|
voice_samples, conditioning_latents = load_voices(voice, extra_voice_dirs)
|
||||||
|
for text_idx, text in enumerate(texts):
|
||||||
|
clip_name = f'{"-".join(voice)}_{text_idx:02d}'
|
||||||
|
if args.output_dir:
|
||||||
|
first_clip = os.path.join(args.output_dir, f'{clip_name}_00.wav')
|
||||||
|
if (args.skip_existing or (regenerate_clips and text_idx not in regenerate_clips)) and os.path.exists(first_clip):
|
||||||
|
audio_parts.append(load_audio(first_clip, 24000))
|
||||||
|
if not args.quiet:
|
||||||
|
print(f'Skipping {clip_name}')
|
||||||
|
continue
|
||||||
|
if not args.quiet:
|
||||||
|
print(f'Rendering {clip_name} ({(voice_idx * len(texts) + text_idx + 1)} of {total_clips})...')
|
||||||
|
print(' ' + text)
|
||||||
|
gen = tts.tts_with_preset(
|
||||||
|
text, voice_samples=voice_samples, conditioning_latents=conditioning_latents, **gen_settings)
|
||||||
|
gen = gen if args.candidates > 1 else [gen]
|
||||||
|
for candidate_idx, audio in enumerate(gen):
|
||||||
|
audio = audio.squeeze(0).cpu()
|
||||||
|
if candidate_idx == 0:
|
||||||
|
audio_parts.append(audio)
|
||||||
|
if args.output_dir:
|
||||||
|
filename = f'{clip_name}_{candidate_idx:02d}.wav'
|
||||||
|
torchaudio.save(os.path.join(args.output_dir, filename), audio, 24000)
|
||||||
|
|
||||||
|
audio = torch.cat(audio_parts, dim=-1)
|
||||||
|
if args.output_dir:
|
||||||
|
filename = f'{"-".join(voice)}_combined.wav'
|
||||||
|
torchaudio.save(os.path.join(args.output_dir, filename), audio, 24000)
|
||||||
|
elif args.output:
|
||||||
|
filename = args.output if args.output else os.tmp
|
||||||
|
torchaudio.save(args.output, audio, 24000)
|
||||||
|
elif args.play:
|
||||||
|
f = tempfile.NamedTemporaryFile(suffix='.wav', delete=True)
|
||||||
|
torchaudio.save(f.name, audio, 24000)
|
||||||
|
pydub.playback.play(pydub.AudioSegment.from_wav(f.name))
|
||||||
|
|
||||||
|
if args.produce_debug_state:
|
||||||
|
os.makedirs('debug_states', exist_ok=True)
|
||||||
|
dbg_state = (seed, texts, voice_samples, conditioning_latents, args)
|
||||||
|
torch.save(dbg_state, os.path.join('debug_states', f'debug_{"-".join(voice)}.pth'))
|
|
@ -26,7 +26,8 @@ from tortoise.utils.wav2vec_alignment import Wav2VecAlignment
|
||||||
|
|
||||||
pbar = None
|
pbar = None
|
||||||
|
|
||||||
MODELS_DIR = os.environ.get('TORTOISE_MODELS_DIR', '.models')
|
DEFAULT_MODELS_DIR = os.path.join(os.path.expanduser('~'), '.cache', 'tortoise', 'models')
|
||||||
|
MODELS_DIR = os.environ.get('TORTOISE_MODELS_DIR', DEFAULT_MODELS_DIR)
|
||||||
MODELS = {
|
MODELS = {
|
||||||
'autoregressive.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/autoregressive.pth',
|
'autoregressive.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/autoregressive.pth',
|
||||||
'classifier.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/classifier.pth',
|
'classifier.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/classifier.pth',
|
||||||
|
@ -309,9 +310,9 @@ class TextToSpeech:
|
||||||
'high_quality': Use if you want the absolute best. This is not really worth the compute, though.
|
'high_quality': Use if you want the absolute best. This is not really worth the compute, though.
|
||||||
"""
|
"""
|
||||||
# Use generally found best tuning knobs for generation.
|
# Use generally found best tuning knobs for generation.
|
||||||
kwargs.update({'temperature': .8, 'length_penalty': 1.0, 'repetition_penalty': 2.0,
|
settings = {'temperature': .8, 'length_penalty': 1.0, 'repetition_penalty': 2.0,
|
||||||
'top_p': .8,
|
'top_p': .8,
|
||||||
'cond_free_k': 2.0, 'diffusion_temperature': 1.0})
|
'cond_free_k': 2.0, 'diffusion_temperature': 1.0}
|
||||||
# Presets are defined here.
|
# Presets are defined here.
|
||||||
presets = {
|
presets = {
|
||||||
'ultra_fast': {'num_autoregressive_samples': 16, 'diffusion_iterations': 30, 'cond_free': False},
|
'ultra_fast': {'num_autoregressive_samples': 16, 'diffusion_iterations': 30, 'cond_free': False},
|
||||||
|
@ -319,8 +320,9 @@ class TextToSpeech:
|
||||||
'standard': {'num_autoregressive_samples': 256, 'diffusion_iterations': 200},
|
'standard': {'num_autoregressive_samples': 256, 'diffusion_iterations': 200},
|
||||||
'high_quality': {'num_autoregressive_samples': 256, 'diffusion_iterations': 400},
|
'high_quality': {'num_autoregressive_samples': 256, 'diffusion_iterations': 400},
|
||||||
}
|
}
|
||||||
kwargs.update(presets[preset])
|
settings.update(presets[preset])
|
||||||
return self.tts(text, **kwargs)
|
settings.update(kwargs) # allow overriding of preset settings with kwargs
|
||||||
|
return self.tts(text, **settings)
|
||||||
|
|
||||||
def tts(self, text, voice_samples=None, conditioning_latents=None, k=1, verbose=True, use_deterministic_seed=None,
|
def tts(self, text, voice_samples=None, conditioning_latents=None, k=1, verbose=True, use_deterministic_seed=None,
|
||||||
return_deterministic_state=False,
|
return_deterministic_state=False,
|
||||||
|
|
|
@ -1,3 +1,4 @@
|
||||||
|
import os
|
||||||
import functools
|
import functools
|
||||||
import math
|
import math
|
||||||
|
|
||||||
|
@ -288,9 +289,12 @@ class AudioMiniEncoder(nn.Module):
|
||||||
return h[:, :, 0]
|
return h[:, :, 0]
|
||||||
|
|
||||||
|
|
||||||
|
DEFAULT_MEL_NORM_FILE = os.path.join(os.path.dirname(os.path.realpath(__file__)), '../data/mel_norms.pth')
|
||||||
|
|
||||||
|
|
||||||
class TorchMelSpectrogram(nn.Module):
|
class TorchMelSpectrogram(nn.Module):
|
||||||
def __init__(self, filter_length=1024, hop_length=256, win_length=1024, n_mel_channels=80, mel_fmin=0, mel_fmax=8000,
|
def __init__(self, filter_length=1024, hop_length=256, win_length=1024, n_mel_channels=80, mel_fmin=0, mel_fmax=8000,
|
||||||
sampling_rate=22050, normalize=False, mel_norm_file='tortoise/data/mel_norms.pth'):
|
sampling_rate=22050, normalize=False, mel_norm_file=DEFAULT_MEL_NORM_FILE):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
# These are the default tacotron values for the MEL spectrogram.
|
# These are the default tacotron values for the MEL spectrogram.
|
||||||
self.filter_length = filter_length
|
self.filter_length = filter_length
|
||||||
|
|
|
@ -10,6 +10,9 @@ from scipy.io.wavfile import read
|
||||||
from tortoise.utils.stft import STFT
|
from tortoise.utils.stft import STFT
|
||||||
|
|
||||||
|
|
||||||
|
BUILTIN_VOICES_DIR = os.path.join(os.path.dirname(os.path.realpath(__file__)), '../voices')
|
||||||
|
|
||||||
|
|
||||||
def load_wav_to_torch(full_path):
|
def load_wav_to_torch(full_path):
|
||||||
sampling_rate, data = read(full_path)
|
sampling_rate, data = read(full_path)
|
||||||
if data.dtype == np.int32:
|
if data.dtype == np.int32:
|
||||||
|
@ -83,7 +86,7 @@ def dynamic_range_decompression(x, C=1):
|
||||||
|
|
||||||
|
|
||||||
def get_voices(extra_voice_dirs=[]):
|
def get_voices(extra_voice_dirs=[]):
|
||||||
dirs = ['tortoise/voices'] + extra_voice_dirs
|
dirs = [BUILTIN_VOICES_DIR] + extra_voice_dirs
|
||||||
voices = {}
|
voices = {}
|
||||||
for d in dirs:
|
for d in dirs:
|
||||||
subs = os.listdir(d)
|
subs = os.listdir(d)
|
||||||
|
@ -115,7 +118,8 @@ def load_voices(voices, extra_voice_dirs=[]):
|
||||||
clips = []
|
clips = []
|
||||||
for voice in voices:
|
for voice in voices:
|
||||||
if voice == 'random':
|
if voice == 'random':
|
||||||
print("Cannot combine a random voice with a non-random voice. Just using a random voice.")
|
if len(voices) > 1:
|
||||||
|
print("Cannot combine a random voice with a non-random voice. Just using a random voice.")
|
||||||
return None, None
|
return None, None
|
||||||
clip, latent = load_voice(voice, extra_voice_dirs)
|
clip, latent = load_voice(voice, extra_voice_dirs)
|
||||||
if latent is None:
|
if latent is None:
|
||||||
|
|
|
@ -1,3 +1,4 @@
|
||||||
|
import os
|
||||||
import re
|
import re
|
||||||
|
|
||||||
import inflect
|
import inflect
|
||||||
|
@ -165,8 +166,11 @@ def lev_distance(s1, s2):
|
||||||
return distances[-1]
|
return distances[-1]
|
||||||
|
|
||||||
|
|
||||||
|
DEFAULT_VOCAB_FILE = os.path.join(os.path.dirname(os.path.realpath(__file__)), '../data/tokenizer.json')
|
||||||
|
|
||||||
|
|
||||||
class VoiceBpeTokenizer:
|
class VoiceBpeTokenizer:
|
||||||
def __init__(self, vocab_file='tortoise/data/tokenizer.json'):
|
def __init__(self, vocab_file=DEFAULT_VOCAB_FILE):
|
||||||
if vocab_file is not None:
|
if vocab_file is not None:
|
||||||
self.tokenizer = Tokenizer.from_file(vocab_file)
|
self.tokenizer = Tokenizer.from_file(vocab_file)
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user