Update API to have more expressive interface for controlling various generation knobs
- Also adds typical decoder support; unfortunately this does not work well with the current model.
This commit is contained in:
parent
b78ae92890
commit
f625a9e443
41
api.py
41
api.py
|
@ -49,13 +49,13 @@ def download_models():
|
||||||
print('Done.')
|
print('Done.')
|
||||||
|
|
||||||
|
|
||||||
def load_discrete_vocoder_diffuser(trained_diffusion_steps=4000, desired_diffusion_steps=200, cond_free=True):
|
def load_discrete_vocoder_diffuser(trained_diffusion_steps=4000, desired_diffusion_steps=200, cond_free=True, cond_free_k=1):
|
||||||
"""
|
"""
|
||||||
Helper function to load a GaussianDiffusion instance configured for use as a vocoder.
|
Helper function to load a GaussianDiffusion instance configured for use as a vocoder.
|
||||||
"""
|
"""
|
||||||
return SpacedDiffusion(use_timesteps=space_timesteps(trained_diffusion_steps, [desired_diffusion_steps]), model_mean_type='epsilon',
|
return SpacedDiffusion(use_timesteps=space_timesteps(trained_diffusion_steps, [desired_diffusion_steps]), model_mean_type='epsilon',
|
||||||
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', trained_diffusion_steps),
|
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', trained_diffusion_steps),
|
||||||
conditioning_free=cond_free, conditioning_free_k=1)
|
conditioning_free=cond_free, conditioning_free_k=cond_free_k)
|
||||||
|
|
||||||
|
|
||||||
def load_conditioning(clip, cond_length=132300):
|
def load_conditioning(clip, cond_length=132300):
|
||||||
|
@ -96,7 +96,7 @@ def fix_autoregressive_output(codes, stop_token):
|
||||||
return codes
|
return codes
|
||||||
|
|
||||||
|
|
||||||
def do_spectrogram_diffusion(diffusion_model, diffuser, mel_codes, conditioning_input, mean=False):
|
def do_spectrogram_diffusion(diffusion_model, diffuser, mel_codes, conditioning_input, temperature=1):
|
||||||
"""
|
"""
|
||||||
Uses the specified diffusion model and DVAE model to convert the provided MEL & conditioning inputs into an audio clip.
|
Uses the specified diffusion model and DVAE model to convert the provided MEL & conditioning inputs into an audio clip.
|
||||||
"""
|
"""
|
||||||
|
@ -111,11 +111,10 @@ def do_spectrogram_diffusion(diffusion_model, diffuser, mel_codes, conditioning_
|
||||||
|
|
||||||
output_shape = (mel.shape[0], 100, mel.shape[-1]*4)
|
output_shape = (mel.shape[0], 100, mel.shape[-1]*4)
|
||||||
precomputed_embeddings = diffusion_model.timestep_independent(mel_codes, cond_mel)
|
precomputed_embeddings = diffusion_model.timestep_independent(mel_codes, cond_mel)
|
||||||
if mean:
|
|
||||||
mel = diffuser.p_sample_loop(diffusion_model, output_shape, noise=torch.zeros(output_shape, device=mel_codes.device),
|
noise = torch.randn(output_shape, device=mel_codes.device) * temperature
|
||||||
model_kwargs={'precomputed_aligned_embeddings': precomputed_embeddings})
|
mel = diffuser.p_sample_loop(diffusion_model, output_shape, noise=noise,
|
||||||
else:
|
model_kwargs={'precomputed_aligned_embeddings': precomputed_embeddings})
|
||||||
mel = diffuser.p_sample_loop(diffusion_model, output_shape, model_kwargs={'precomputed_aligned_embeddings': precomputed_embeddings})
|
|
||||||
return denormalize_tacotron_mel(mel)[:,:,:msl*4]
|
return denormalize_tacotron_mel(mel)[:,:,:msl*4]
|
||||||
|
|
||||||
|
|
||||||
|
@ -150,7 +149,12 @@ class TextToSpeech:
|
||||||
self.vocoder.load_state_dict(torch.load('.models/vocoder.pth')['model_g'])
|
self.vocoder.load_state_dict(torch.load('.models/vocoder.pth')['model_g'])
|
||||||
self.vocoder.eval(inference=True)
|
self.vocoder.eval(inference=True)
|
||||||
|
|
||||||
def tts(self, text, voice_samples, num_autoregressive_samples=512, k=1, diffusion_iterations=100, cond_free=True):
|
def tts(self, text, voice_samples, k=1,
|
||||||
|
# autoregressive generation parameters follow
|
||||||
|
num_autoregressive_samples=512, temperature=.9, length_penalty=1, repetition_penalty=1.0, top_k=50, top_p=.95,
|
||||||
|
typical_sampling=False, typical_mass=.9,
|
||||||
|
# diffusion generation parameters follow
|
||||||
|
diffusion_iterations=100, cond_free=True, cond_free_k=1, diffusion_temperature=1,):
|
||||||
text = torch.IntTensor(self.tokenizer.encode(text)).unsqueeze(0).cuda()
|
text = torch.IntTensor(self.tokenizer.encode(text)).unsqueeze(0).cuda()
|
||||||
text = F.pad(text, (0, 1)) # This may not be necessary.
|
text = F.pad(text, (0, 1)) # This may not be necessary.
|
||||||
|
|
||||||
|
@ -167,7 +171,7 @@ class TextToSpeech:
|
||||||
else:
|
else:
|
||||||
cond_diffusion = cond_diffusion[:, :88200]
|
cond_diffusion = cond_diffusion[:, :88200]
|
||||||
|
|
||||||
diffuser = load_discrete_vocoder_diffuser(desired_diffusion_steps=diffusion_iterations, cond_free=cond_free)
|
diffuser = load_discrete_vocoder_diffuser(desired_diffusion_steps=diffusion_iterations, cond_free=cond_free, cond_free_k=cond_free_k)
|
||||||
|
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
samples = []
|
samples = []
|
||||||
|
@ -175,11 +179,16 @@ class TextToSpeech:
|
||||||
stop_mel_token = self.autoregressive.stop_mel_token
|
stop_mel_token = self.autoregressive.stop_mel_token
|
||||||
self.autoregressive = self.autoregressive.cuda()
|
self.autoregressive = self.autoregressive.cuda()
|
||||||
for b in tqdm(range(num_batches)):
|
for b in tqdm(range(num_batches)):
|
||||||
codes = self.autoregressive.inference_speech(conds, text, num_beams=1, repetition_penalty=1.0, do_sample=True,
|
codes = self.autoregressive.inference_speech(conds, text,
|
||||||
top_k=50, top_p=.95,
|
do_sample=True,
|
||||||
temperature=.9,
|
top_k=top_k,
|
||||||
num_return_sequences=self.autoregressive_batch_size,
|
top_p=top_p,
|
||||||
length_penalty=1)
|
temperature=temperature,
|
||||||
|
num_return_sequences=self.autoregressive_batch_size,
|
||||||
|
length_penalty=length_penalty,
|
||||||
|
repetition_penalty=repetition_penalty,
|
||||||
|
typical_sampling=typical_sampling,
|
||||||
|
typical_mass=typical_mass)
|
||||||
padding_needed = 250 - codes.shape[1]
|
padding_needed = 250 - codes.shape[1]
|
||||||
codes = F.pad(codes, (0, padding_needed), value=stop_mel_token)
|
codes = F.pad(codes, (0, padding_needed), value=stop_mel_token)
|
||||||
samples.append(codes)
|
samples.append(codes)
|
||||||
|
@ -203,7 +212,7 @@ class TextToSpeech:
|
||||||
self.vocoder = self.vocoder.cuda()
|
self.vocoder = self.vocoder.cuda()
|
||||||
for b in range(best_results.shape[0]):
|
for b in range(best_results.shape[0]):
|
||||||
code = best_results[b].unsqueeze(0)
|
code = best_results[b].unsqueeze(0)
|
||||||
mel = do_spectrogram_diffusion(self.diffusion, diffuser, code, cond_diffusion, mean=False)
|
mel = do_spectrogram_diffusion(self.diffusion, diffuser, code, cond_diffusion, temperature=diffusion_temperature)
|
||||||
wav = self.vocoder.inference(mel)
|
wav = self.vocoder.inference(mel)
|
||||||
wav_candidates.append(wav.cpu())
|
wav_candidates.append(wav.cpu())
|
||||||
self.diffusion = self.diffusion.cpu()
|
self.diffusion = self.diffusion.cpu()
|
||||||
|
|
|
@ -7,7 +7,7 @@ from utils.audio import load_audio
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
fname = 'Y:\\libritts\\test-clean\\transcribed-brief-w2v.tsv'
|
fname = 'Y:\\libritts\\test-clean\\transcribed-brief-w2v.tsv'
|
||||||
outpath = 'D:\\tmp\\tortoise-tts-eval\\baseline'
|
outpath = 'D:\\tmp\\tortoise-tts-eval\\redo_outlier'
|
||||||
outpath_real = 'D:\\tmp\\tortoise-tts-eval\\real'
|
outpath_real = 'D:\\tmp\\tortoise-tts-eval\\real'
|
||||||
|
|
||||||
os.makedirs(outpath, exist_ok=True)
|
os.makedirs(outpath, exist_ok=True)
|
||||||
|
@ -24,7 +24,8 @@ if __name__ == '__main__':
|
||||||
path = os.path.join(os.path.dirname(fname), line[1])
|
path = os.path.join(os.path.dirname(fname), line[1])
|
||||||
cond_audio = load_audio(path, 22050)
|
cond_audio = load_audio(path, 22050)
|
||||||
torchaudio.save(os.path.join(outpath_real, os.path.basename(line[1])), cond_audio, 22050)
|
torchaudio.save(os.path.join(outpath_real, os.path.basename(line[1])), cond_audio, 22050)
|
||||||
sample = tts.tts(transcript, [cond_audio, cond_audio], num_autoregressive_samples=512, k=1, diffusion_iterations=200, cond_free=True)
|
sample = tts.tts(transcript, [cond_audio, cond_audio], num_autoregressive_samples=256, k=1, diffusion_iterations=200, cond_free=False,
|
||||||
|
top_k=None, top_p=.95, typical_sampling=False, temperature=.7, length_penalty=.5, repetition_penalty=1)
|
||||||
down = torchaudio.functional.resample(sample, 24000, 22050)
|
down = torchaudio.functional.resample(sample, 24000, 22050)
|
||||||
fout_path = os.path.join(outpath, os.path.basename(line[1]))
|
fout_path = os.path.join(outpath, os.path.basename(line[1]))
|
||||||
torchaudio.save(fout_path, down.squeeze(0), 22050)
|
torchaudio.save(fout_path, down.squeeze(0), 22050)
|
||||||
|
|
|
@ -3,11 +3,11 @@ import functools
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
from transformers import GPT2Config, GPT2PreTrainedModel
|
from transformers import GPT2Config, GPT2PreTrainedModel, LogitsProcessorList
|
||||||
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
|
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
|
||||||
from transformers.utils.model_parallel_utils import get_device_map, assert_device_map
|
from transformers.utils.model_parallel_utils import get_device_map, assert_device_map
|
||||||
from models.arch_util import AttentionBlock
|
from models.arch_util import AttentionBlock
|
||||||
|
from utils.typical_sampling import TypicalLogitsWarper
|
||||||
|
|
||||||
|
|
||||||
def null_position_embeddings(range, dim):
|
def null_position_embeddings(range, dim):
|
||||||
|
@ -497,7 +497,7 @@ class UnifiedVoice(nn.Module):
|
||||||
loss_mel = F.cross_entropy(mel_logits, mel_targets.long())
|
loss_mel = F.cross_entropy(mel_logits, mel_targets.long())
|
||||||
return loss_mel.mean()
|
return loss_mel.mean()
|
||||||
|
|
||||||
def inference_speech(self, speech_conditioning_input, text_inputs, **hf_generate_kwargs):
|
def inference_speech(self, speech_conditioning_input, text_inputs, typical_sampling=False, typical_mass=.9, **hf_generate_kwargs):
|
||||||
seq_length = self.max_mel_tokens + self.max_text_tokens + 2
|
seq_length = self.max_mel_tokens + self.max_text_tokens + 2
|
||||||
if not hasattr(self, 'inference_model'):
|
if not hasattr(self, 'inference_model'):
|
||||||
# TODO: Decouple gpt_config from this inference model.
|
# TODO: Decouple gpt_config from this inference model.
|
||||||
|
@ -530,8 +530,9 @@ class UnifiedVoice(nn.Module):
|
||||||
fake_inputs = torch.full((emb.shape[0], conds.shape[1]+emb.shape[1],), fill_value=1, dtype=torch.long, device=text_inputs.device)
|
fake_inputs = torch.full((emb.shape[0], conds.shape[1]+emb.shape[1],), fill_value=1, dtype=torch.long, device=text_inputs.device)
|
||||||
fake_inputs[:,-1] = self.start_mel_token
|
fake_inputs[:,-1] = self.start_mel_token
|
||||||
|
|
||||||
|
logits_processor = LogitsProcessorList([TypicalLogitsWarper(mass=typical_mass)]) if typical_sampling else LogitsProcessorList()
|
||||||
gen = self.inference_model.generate(fake_inputs, bos_token_id=self.start_mel_token, pad_token_id=self.stop_mel_token, eos_token_id=self.stop_mel_token,
|
gen = self.inference_model.generate(fake_inputs, bos_token_id=self.start_mel_token, pad_token_id=self.stop_mel_token, eos_token_id=self.stop_mel_token,
|
||||||
max_length=seq_length, **hf_generate_kwargs)
|
max_length=fake_inputs.shape[-1] + self.max_mel_tokens - 1, logits_processor=logits_processor, **hf_generate_kwargs)
|
||||||
return gen[:, fake_inputs.shape[1]:]
|
return gen[:, fake_inputs.shape[1]:]
|
||||||
|
|
||||||
|
|
||||||
|
|
33
utils/typical_sampling.py
Normal file
33
utils/typical_sampling.py
Normal file
|
@ -0,0 +1,33 @@
|
||||||
|
import torch
|
||||||
|
from transformers import LogitsWarper
|
||||||
|
|
||||||
|
|
||||||
|
class TypicalLogitsWarper(LogitsWarper):
|
||||||
|
def __init__(self, mass: float = 0.9, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
|
||||||
|
self.filter_value = filter_value
|
||||||
|
self.mass = mass
|
||||||
|
self.min_tokens_to_keep = min_tokens_to_keep
|
||||||
|
|
||||||
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
||||||
|
# calculate entropy
|
||||||
|
normalized = torch.nn.functional.log_softmax(scores, dim=-1)
|
||||||
|
p = torch.exp(normalized)
|
||||||
|
ent = -(normalized * p).nansum(-1, keepdim=True)
|
||||||
|
|
||||||
|
# shift and sort
|
||||||
|
shifted_scores = torch.abs((-normalized) - ent)
|
||||||
|
sorted_scores, sorted_indices = torch.sort(shifted_scores, descending=False)
|
||||||
|
sorted_logits = scores.gather(-1, sorted_indices)
|
||||||
|
cumulative_probs = sorted_logits.softmax(dim=-1).cumsum(dim=-1)
|
||||||
|
|
||||||
|
# Remove tokens with cumulative mass above the threshold
|
||||||
|
last_ind = (cumulative_probs < self.mass).sum(dim=1)
|
||||||
|
last_ind[last_ind < 0] = 0
|
||||||
|
sorted_indices_to_remove = sorted_scores > sorted_scores.gather(1, last_ind.view(-1, 1))
|
||||||
|
if self.min_tokens_to_keep > 1:
|
||||||
|
# Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
|
||||||
|
sorted_indices_to_remove[..., : self.min_tokens_to_keep] = 0
|
||||||
|
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
|
||||||
|
|
||||||
|
scores = scores.masked_fill(indices_to_remove, self.filter_value)
|
||||||
|
return scores
|
Loading…
Reference in New Issue
Block a user