import argparse import os from time import time import torch import torchaudio from api import TextToSpeech, MODELS_DIR from utils.audio import load_audio, load_voices from utils.text import split_and_recombine_text if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--textfile', type=str, help='A file containing the text to read.', default="tortoise/data/riding_hood.txt") parser.add_argument('--voice', type=str, help='Selects the voice to use for generation. See options in voices/ directory (and add your own!) ' 'Use the & character to join two voices together. Use a comma to perform inference on multiple voices.', default='pat') parser.add_argument('--output_path', type=str, help='Where to store outputs.', default='results/longform/') parser.add_argument('--preset', type=str, help='Which voice preset to use.', default='standard') parser.add_argument('--regenerate', type=str, help='Comma-separated list of clip numbers to re-generate, or nothing.', default=None) parser.add_argument('--candidates', type=int, help='How many output candidates to produce per-voice. Only the first candidate is actually used in the final product, the others can be used manually.', default=1) parser.add_argument('--model_dir', type=str, help='Where to find pretrained model checkpoints. Tortoise automatically downloads these to .models, so this' 'should only be specified if you have custom checkpoints.', default=MODELS_DIR) parser.add_argument('--seed', type=int, help='Random seed which can be used to reproduce results.', default=None) parser.add_argument('--produce_debug_state', type=bool, help='Whether or not to produce debug_state.pth, which can aid in reproducing problems. Defaults to true.', default=True) args = parser.parse_args() tts = TextToSpeech(models_dir=args.model_dir) outpath = args.output_path selected_voices = args.voice.split(',') regenerate = args.regenerate if regenerate is not None: regenerate = [int(e) for e in regenerate.split(',')] # Process text with open(args.textfile, 'r', encoding='utf-8') as f: text = ' '.join([l for l in f.readlines()]) if '|' in text: print("Found the '|' character in your text, which I will use as a cue for where to split it up. If this was not" "your intent, please remove all '|' characters from the input.") texts = text.split('|') else: texts = split_and_recombine_text(text) seed = int(time()) if args.seed is None else args.seed for selected_voice in selected_voices: voice_outpath = os.path.join(outpath, selected_voice) os.makedirs(voice_outpath, exist_ok=True) if '&' in selected_voice: voice_sel = selected_voice.split('&') else: voice_sel = [selected_voice] voice_samples, conditioning_latents = load_voices(voice_sel) all_parts = [] for j, text in enumerate(texts): if regenerate is not None and j not in regenerate: all_parts.append(load_audio(os.path.join(voice_outpath, f'{j}.wav'), 24000)) continue gen = tts.tts_with_preset(text, voice_samples=voice_samples, conditioning_latents=conditioning_latents, preset=args.preset, k=args.candidates, use_deterministic_seed=seed) if args.candidates == 1: gen = gen.squeeze(0).cpu() torchaudio.save(os.path.join(voice_outpath, f'{j}.wav'), gen, 24000) else: candidate_dir = os.path.join(voice_outpath, str(j)) os.makedirs(candidate_dir, exist_ok=True) for k, g in enumerate(gen): torchaudio.save(os.path.join(candidate_dir, f'{k}.wav'), g.squeeze(0).cpu(), 24000) gen = gen[0].squeeze(0).cpu() all_parts.append(gen) if args.candidates == 1: full_audio = torch.cat(all_parts, dim=-1) torchaudio.save(os.path.join(voice_outpath, 'combined.wav'), full_audio, 24000) if args.produce_debug_state: os.makedirs('debug_states', exist_ok=True) dbg_state = (seed, texts, voice_samples, conditioning_latents) torch.save(dbg_state, f'debug_states/read_debug_{selected_voice}.pth') # Combine each candidate's audio clips. if args.candidates > 1: audio_clips = [] for candidate in range(args.candidates): for line in range(len(texts)): wav_file = os.path.join(voice_outpath, str(line), f"{candidate}.wav") audio_clips.append(load_audio(wav_file, 24000)) audio_clips = torch.cat(audio_clips, dim=-1) torchaudio.save(os.path.join(voice_outpath, f"combined_{candidate:02d}.wav"), audio_clips, 24000) audio_clips = []