import os import random import uuid from urllib import request import torch import torch.nn.functional as F import progressbar import torchaudio from tortoise.models.classifier import AudioMiniEncoderWithClassifierHead from tortoise.models.cvvp import CVVP from tortoise.models.diffusion_decoder import DiffusionTts from tortoise.models.autoregressive import UnifiedVoice from tqdm import tqdm from tortoise.models.arch_util import TorchMelSpectrogram from tortoise.models.clvp import CLVP from tortoise.models.random_latent_generator import RandomLatentConverter from tortoise.models.vocoder import UnivNetGenerator from tortoise.utils.audio import wav_to_univnet_mel, denormalize_tacotron_mel from tortoise.utils.diffusion import SpacedDiffusion, space_timesteps, get_named_beta_schedule from tortoise.utils.tokenizer import VoiceBpeTokenizer from tortoise.utils.wav2vec_alignment import Wav2VecAlignment pbar = None def download_models(specific_models=None): """ Call to download all the models that Tortoise uses. """ MODELS = { 'autoregressive.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/hf/.models/autoregressive.pth', 'classifier.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/hf/.models/classifier.pth', 'clvp.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/hf/.models/clvp.pth', 'cvvp.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/hf/.models/cvvp.pth', 'diffusion_decoder.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/hf/.models/diffusion_decoder.pth', 'vocoder.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/hf/.models/vocoder.pth', 'rlg_auto.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/hf/.models/rlg_auto.pth', 'rlg_diffuser.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/hf/.models/rlg_diffuser.pth', } os.makedirs('.models', exist_ok=True) def show_progress(block_num, block_size, total_size): global pbar if pbar is None: pbar = progressbar.ProgressBar(maxval=total_size) pbar.start() downloaded = block_num * block_size if downloaded < total_size: pbar.update(downloaded) else: pbar.finish() pbar = None for model_name, url in MODELS.items(): if specific_models is not None and model_name not in specific_models: continue if os.path.exists(f'.models/{model_name}'): continue print(f'Downloading {model_name} from {url}...') request.urlretrieve(url, f'.models/{model_name}', show_progress) print('Done.') def pad_or_truncate(t, length): """ Utility function for forcing to have the specified sequence length, whether by clipping it or padding it with 0s. """ if t.shape[-1] == length: return t elif t.shape[-1] < length: return F.pad(t, (0, length-t.shape[-1])) else: return t[..., :length] def load_discrete_vocoder_diffuser(trained_diffusion_steps=4000, desired_diffusion_steps=200, cond_free=True, cond_free_k=1): """ Helper function to load a GaussianDiffusion instance configured for use as a vocoder. """ return SpacedDiffusion(use_timesteps=space_timesteps(trained_diffusion_steps, [desired_diffusion_steps]), model_mean_type='epsilon', model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', trained_diffusion_steps), conditioning_free=cond_free, conditioning_free_k=cond_free_k) def format_conditioning(clip, cond_length=132300): """ Converts the given conditioning signal to a MEL spectrogram and clips it as expected by the models. """ gap = clip.shape[-1] - cond_length if gap < 0: clip = F.pad(clip, pad=(0, abs(gap))) elif gap > 0: rand_start = random.randint(0, gap) clip = clip[:, rand_start:rand_start + cond_length] mel_clip = TorchMelSpectrogram()(clip.unsqueeze(0)).squeeze(0) return mel_clip.unsqueeze(0).cuda() def fix_autoregressive_output(codes, stop_token, complain=True): """ This function performs some padding on coded audio that fixes a mismatch issue between what the diffusion model was trained on and what the autoregressive code generator creates (which has no padding or end). This is highly specific to the DVAE being used, so this particular coding will not necessarily work if used with a different DVAE. This can be inferred by feeding a audio clip padded with lots of zeros on the end through the DVAE and copying out the last few codes. Failing to do this padding will produce speech with a harsh end that sounds like "BLAH" or similar. """ # Strip off the autoregressive stop token and add padding. stop_token_indices = (codes == stop_token).nonzero() if len(stop_token_indices) == 0: if complain: print("No stop tokens found in one of the generated voice clips. This typically means the spoken audio is " "too long. In some cases, the output will still be good, though. Listen to it and if it is missing words, " "try breaking up your input text.") return codes else: codes[stop_token_indices] = 83 stm = stop_token_indices.min().item() codes[stm:] = 83 if stm - 3 < codes.shape[0]: codes[-3] = 45 codes[-2] = 45 codes[-1] = 248 return codes def do_spectrogram_diffusion(diffusion_model, diffuser, latents, conditioning_latents, temperature=1, verbose=True): """ Uses the specified diffusion model to convert discrete codes into a spectrogram. """ with torch.no_grad(): output_seq_len = latents.shape[1] * 4 * 24000 // 22050 # This diffusion model converts from 22kHz spectrogram codes to a 24kHz spectrogram signal. output_shape = (latents.shape[0], 100, output_seq_len) precomputed_embeddings = diffusion_model.timestep_independent(latents, conditioning_latents, output_seq_len, False) noise = torch.randn(output_shape, device=latents.device) * temperature mel = diffuser.p_sample_loop(diffusion_model, output_shape, noise=noise, model_kwargs={'precomputed_aligned_embeddings': precomputed_embeddings}, progress=verbose) return denormalize_tacotron_mel(mel)[:,:,:output_seq_len] def classify_audio_clip(clip): """ Returns whether or not Tortoises' classifier thinks the given clip came from Tortoise. :param clip: torch tensor containing audio waveform data (get it from load_audio) :return: True if the clip was classified as coming from Tortoise and false if it was classified as real. """ download_models(['classifier.pth']) classifier = AudioMiniEncoderWithClassifierHead(2, spec_dim=1, embedding_dim=512, depth=5, downsample_factor=4, resnet_blocks=2, attn_blocks=4, num_attn_heads=4, base_channels=32, dropout=0, kernel_size=5, distribute_zero_label=False) classifier.load_state_dict(torch.load('.models/classifier.pth', map_location=torch.device('cpu'))) clip = clip.cpu().unsqueeze(0) results = F.softmax(classifier(clip), dim=-1) return results[0][0] class TextToSpeech: """ Main entry point into Tortoise. """ def __init__(self, autoregressive_batch_size=16, models_dir='.models', enable_redaction=True): """ Constructor :param autoregressive_batch_size: Specifies how many samples to generate per batch. Lower this if you are seeing GPU OOM errors. Larger numbers generates slightly faster. :param models_dir: Where model weights are stored. This should only be specified if you are providing your own models, otherwise use the defaults. :param enable_redaction: When true, text enclosed in brackets are automatically redacted from the spoken output (but are still rendered by the model). This can be used for prompt engineering. Default is true. """ self.autoregressive_batch_size = autoregressive_batch_size self.enable_redaction = enable_redaction if self.enable_redaction: self.aligner = Wav2VecAlignment() self.tokenizer = VoiceBpeTokenizer() download_models() if os.path.exists(f'{models_dir}/autoregressive.ptt'): # Assume this is a traced directory. self.autoregressive = torch.jit.load(f'{models_dir}/autoregressive.ptt') self.diffusion = torch.jit.load(f'{models_dir}/diffusion_decoder.ptt') else: self.autoregressive = UnifiedVoice(max_mel_tokens=604, max_text_tokens=402, max_conditioning_inputs=2, layers=30, model_dim=1024, heads=16, number_text_tokens=255, start_text_token=255, checkpointing=False, train_solo_embeddings=False).cpu().eval() self.autoregressive.load_state_dict(torch.load(f'{models_dir}/autoregressive.pth')) self.diffusion = DiffusionTts(model_channels=1024, num_layers=10, in_channels=100, out_channels=200, in_latent_channels=1024, in_tokens=8193, dropout=0, use_fp16=False, num_heads=16, layer_drop=0, unconditioned_percentage=0).cpu().eval() self.diffusion.load_state_dict(torch.load(f'{models_dir}/diffusion_decoder.pth')) self.clvp = CLVP(dim_text=512, dim_speech=512, dim_latent=512, num_text_tokens=256, text_enc_depth=12, text_seq_len=350, text_heads=8, num_speech_tokens=8192, speech_enc_depth=12, speech_heads=8, speech_seq_len=430, use_xformers=True).cpu().eval() self.clvp.load_state_dict(torch.load(f'{models_dir}/clvp.pth')) self.cvvp = CVVP(model_dim=512, transformer_heads=8, dropout=0, mel_codes=8192, conditioning_enc_depth=8, cond_mask_percentage=0, speech_enc_depth=8, speech_mask_percentage=0, latent_multiplier=1).cpu().eval() self.cvvp.load_state_dict(torch.load(f'{models_dir}/cvvp.pth')) self.vocoder = UnivNetGenerator().cpu() self.vocoder.load_state_dict(torch.load(f'{models_dir}/vocoder.pth')['model_g']) self.vocoder.eval(inference=True) # Random latent generators (RLGs) are loaded lazily. self.rlg_auto = None self.rlg_diffusion = None def get_conditioning_latents(self, voice_samples, return_mels=False): """ Transforms one or more voice_samples into a tuple (autoregressive_conditioning_latent, diffusion_conditioning_latent). These are expressive learned latents that encode aspects of the provided clips like voice, intonation, and acoustic properties. :param voice_samples: List of 2 or more ~10 second reference clips, which should be torch tensors containing 22.05kHz waveform data. """ voice_samples = [v.to('cuda') for v in voice_samples] auto_conds = [] if not isinstance(voice_samples, list): voice_samples = [voice_samples] for vs in voice_samples: auto_conds.append(format_conditioning(vs)) auto_conds = torch.stack(auto_conds, dim=1) self.autoregressive = self.autoregressive.cuda() auto_latent = self.autoregressive.get_conditioning(auto_conds) self.autoregressive = self.autoregressive.cpu() diffusion_conds = [] for sample in voice_samples: # The diffuser operates at a sample rate of 24000 (except for the latent inputs) sample = torchaudio.functional.resample(sample, 22050, 24000) sample = pad_or_truncate(sample, 102400) cond_mel = wav_to_univnet_mel(sample.to('cuda'), do_normalization=False) diffusion_conds.append(cond_mel) diffusion_conds = torch.stack(diffusion_conds, dim=1) self.diffusion = self.diffusion.cuda() diffusion_latent = self.diffusion.get_conditioning(diffusion_conds) self.diffusion = self.diffusion.cpu() if return_mels: return auto_latent, diffusion_latent, auto_conds, diffusion_conds else: return auto_latent, diffusion_latent def get_random_conditioning_latents(self): # Lazy-load the RLG models. if self.rlg_auto is None: self.rlg_auto = RandomLatentConverter(1024).eval() self.rlg_auto.load_state_dict(torch.load('.models/rlg_auto.pth', map_location=torch.device('cpu'))) self.rlg_diffusion = RandomLatentConverter(2048).eval() self.rlg_diffusion.load_state_dict(torch.load('.models/rlg_diffuser.pth', map_location=torch.device('cpu'))) with torch.no_grad(): return self.rlg_auto(torch.tensor([0.0])), self.rlg_diffusion(torch.tensor([0.0])) def tts_with_preset(self, text, preset='fast', **kwargs): """ Calls TTS with one of a set of preset generation parameters. Options: 'ultra_fast': Produces speech at a speed which belies the name of this repo. (Not really, but it's definitely fastest). 'fast': Decent quality speech at a decent inference rate. A good choice for mass inference. 'standard': Very good quality. This is generally about as good as you are going to get. 'high_quality': Use if you want the absolute best. This is not really worth the compute, though. """ # Use generally found best tuning knobs for generation. kwargs.update({'temperature': .8, 'length_penalty': 1.0, 'repetition_penalty': 2.0, #'typical_sampling': True, 'top_p': .8, 'cond_free_k': 2.0, 'diffusion_temperature': 1.0}) # Presets are defined here. presets = { 'ultra_fast': {'num_autoregressive_samples': 16, 'diffusion_iterations': 32, 'cond_free': False}, 'fast': {'num_autoregressive_samples': 96, 'diffusion_iterations': 32}, 'standard': {'num_autoregressive_samples': 256, 'diffusion_iterations': 128}, 'high_quality': {'num_autoregressive_samples': 512, 'diffusion_iterations': 1024}, } kwargs.update(presets[preset]) return self.tts(text, **kwargs) def tts(self, text, voice_samples=None, conditioning_latents=None, k=1, verbose=True, # autoregressive generation parameters follow num_autoregressive_samples=512, temperature=.8, length_penalty=1, repetition_penalty=2.0, top_p=.8, max_mel_tokens=500, # CLVP & CVVP parameters clvp_cvvp_slider=.5, # diffusion generation parameters follow diffusion_iterations=100, cond_free=True, cond_free_k=2, diffusion_temperature=1.0, **hf_generate_kwargs): """ Produces an audio clip of the given text being spoken with the given reference voice. :param text: Text to be spoken. :param voice_samples: List of 2 or more ~10 second reference clips which should be torch tensors containing 22.05kHz waveform data. :param conditioning_latents: A tuple of (autoregressive_conditioning_latent, diffusion_conditioning_latent), which can be provided in lieu of voice_samples. This is ignored unless voice_samples=None. Conditioning latents can be retrieved via get_conditioning_latents(). :param k: The number of returned clips. The most likely (as determined by Tortoises' CLVP and CVVP models) clips are returned. :param verbose: Whether or not to print log messages indicating the progress of creating a clip. Default=true. ~~AUTOREGRESSIVE KNOBS~~ :param num_autoregressive_samples: Number of samples taken from the autoregressive model, all of which are filtered using CLVP+CVVP. As Tortoise is a probabilistic model, more samples means a higher probability of creating something "great". :param temperature: The softmax temperature of the autoregressive model. :param length_penalty: A length penalty applied to the autoregressive decoder. Higher settings causes the model to produce more terse outputs. :param repetition_penalty: A penalty that prevents the autoregressive decoder from repeating itself during decoding. Can be used to reduce the incidence of long silences or "uhhhhhhs", etc. :param top_p: P value used in nucleus sampling. (0,1]. Lower values mean the decoder produces more "likely" (aka boring) outputs. :param max_mel_tokens: Restricts the output length. (0,600] integer. Each unit is 1/20 of a second. :param typical_sampling: Turns typical sampling on or off. This sampling mode is discussed in this paper: https://arxiv.org/abs/2202.00666 I was interested in the premise, but the results were not as good as I was hoping. This is off by default, but could use some tuning. :param typical_mass: The typical_mass parameter from the typical_sampling algorithm. ~~CLVP-CVVP KNOBS~~ :param clvp_cvvp_slider: Controls the influence of the CLVP and CVVP models in selecting the best output from the autoregressive model. [0,1]. Values closer to 1 will cause Tortoise to emit clips that follow the text more. Values closer to 0 will cause Tortoise to emit clips that more closely follow the reference clip (e.g. the voice sounds more similar). ~~DIFFUSION KNOBS~~ :param diffusion_iterations: Number of diffusion steps to perform. [0,4000]. More steps means the network has more chances to iteratively refine the output, which should theoretically mean a higher quality output. Generally a value above 250 is not noticeably better, however. :param cond_free: Whether or not to perform conditioning-free diffusion. Conditioning-free diffusion performs two forward passes for each diffusion step: one with the outputs of the autoregressive model and one with no conditioning priors. The output of the two is blended according to the cond_free_k value below. Conditioning-free diffusion is the real deal, and dramatically improves realism. :param cond_free_k: Knob that determines how to balance the conditioning free signal with the conditioning-present signal. [0,inf]. As cond_free_k increases, the output becomes dominated by the conditioning-free signal. Formula is: output=cond_present_output*(cond_free_k+1)-cond_absenct_output*cond_free_k :param diffusion_temperature: Controls the variance of the noise fed into the diffusion model. [0,1]. Values at 0 are the "mean" prediction of the diffusion network and will sound bland and smeared. ~~OTHER STUFF~~ :param hf_generate_kwargs: The huggingface Transformers generate API is used for the autoregressive transformer. Extra keyword args fed to this function get forwarded directly to that API. Documentation here: https://huggingface.co/docs/transformers/internal/generation_utils :return: Generated audio clip(s) as a torch tensor. Shape 1,S if k=1 else, (k,1,S) where S is the sample length. Sample rate is 24kHz. """ text_tokens = torch.IntTensor(self.tokenizer.encode(text)).unsqueeze(0).cuda() text_tokens = F.pad(text_tokens, (0, 1)) # This may not be necessary. assert text_tokens.shape[-1] < 400, 'Too much text provided. Break the text up into separate segments and re-try inference.' auto_conds = None if voice_samples is not None: auto_conditioning, diffusion_conditioning, auto_conds, _ = self.get_conditioning_latents(voice_samples, return_mels=True) elif conditioning_latents is not None: auto_conditioning, diffusion_conditioning = conditioning_latents else: auto_conditioning, diffusion_conditioning = self.get_random_conditioning_latents() auto_conditioning = auto_conditioning.cuda() diffusion_conditioning = diffusion_conditioning.cuda() diffuser = load_discrete_vocoder_diffuser(desired_diffusion_steps=diffusion_iterations, cond_free=cond_free, cond_free_k=cond_free_k) with torch.no_grad(): samples = [] num_batches = num_autoregressive_samples // self.autoregressive_batch_size stop_mel_token = self.autoregressive.stop_mel_token calm_token = 83 # This is the token for coding silence, which is fixed in place with "fix_autoregressive_output" self.autoregressive = self.autoregressive.cuda() if verbose: print("Generating autoregressive samples..") for b in tqdm(range(num_batches), disable=not verbose): codes = self.autoregressive.inference_speech(auto_conditioning, text_tokens, do_sample=True, top_p=top_p, temperature=temperature, num_return_sequences=self.autoregressive_batch_size, length_penalty=length_penalty, repetition_penalty=repetition_penalty, max_generate_length=max_mel_tokens, **hf_generate_kwargs) padding_needed = max_mel_tokens - codes.shape[1] codes = F.pad(codes, (0, padding_needed), value=stop_mel_token) samples.append(codes) self.autoregressive = self.autoregressive.cpu() clip_results = [] self.clvp = self.clvp.cuda() self.cvvp = self.cvvp.cuda() if verbose: print("Computing best candidates using CLVP and CVVP") for batch in tqdm(samples, disable=not verbose): for i in range(batch.shape[0]): batch[i] = fix_autoregressive_output(batch[i], stop_mel_token) clvp = self.clvp(text_tokens.repeat(batch.shape[0], 1), batch, return_loss=False) if auto_conds is not None: cvvp_accumulator = 0 for cl in range(auto_conds.shape[1]): cvvp_accumulator = cvvp_accumulator + self.cvvp(auto_conds[:, cl].repeat(batch.shape[0], 1, 1), batch, return_loss=False) cvvp = cvvp_accumulator / auto_conds.shape[1] clip_results.append(clvp * clvp_cvvp_slider + cvvp * (1-clvp_cvvp_slider)) else: clip_results.append(clvp) clip_results = torch.cat(clip_results, dim=0) samples = torch.cat(samples, dim=0) best_results = samples[torch.topk(clip_results, k=k).indices] self.clvp = self.clvp.cpu() self.cvvp = self.cvvp.cpu() del samples # The diffusion model actually wants the last hidden layer from the autoregressive model as conditioning # inputs. Re-produce those for the top results. This could be made more efficient by storing all of these # results, but will increase memory usage. self.autoregressive = self.autoregressive.cuda() best_latents = self.autoregressive(auto_conditioning.repeat(k, 1), text_tokens.repeat(k, 1), torch.tensor([text_tokens.shape[-1]], device=text_tokens.device), best_results, torch.tensor([best_results.shape[-1]*self.autoregressive.mel_length_compression], device=text_tokens.device), return_latent=True, clip_inputs=False) self.autoregressive = self.autoregressive.cpu() del auto_conditioning if verbose: print("Transforming autoregressive outputs into audio..") wav_candidates = [] self.diffusion = self.diffusion.cuda() self.vocoder = self.vocoder.cuda() for b in range(best_results.shape[0]): codes = best_results[b].unsqueeze(0) latents = best_latents[b].unsqueeze(0) # Find the first occurrence of the "calm" token and trim the codes to that. ctokens = 0 for k in range(codes.shape[-1]): if codes[0, k] == calm_token: ctokens += 1 else: ctokens = 0 if ctokens > 8: # 8 tokens gives the diffusion model some "breathing room" to terminate speech. latents = latents[:, :k] break mel = do_spectrogram_diffusion(self.diffusion, diffuser, latents, diffusion_conditioning, temperature=diffusion_temperature, verbose=verbose) wav = self.vocoder.inference(mel) wav_candidates.append(wav.cpu()) self.diffusion = self.diffusion.cpu() self.vocoder = self.vocoder.cpu() def potentially_redact(clip, text): if self.enable_redaction: return self.aligner.redact(clip.squeeze(1), text).unsqueeze(1) return clip wav_candidates = [potentially_redact(wav_candidate, text) for wav_candidate in wav_candidates] if len(wav_candidates) > 1: return wav_candidates return wav_candidates[0]