import torch import torch.nn as nn import torch.nn.functional as F from transformers import GPT2PreTrainedModel, GPT2Config from models.xtransformers import TransformerWrapper, Encoder, Decoder from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions from models.arch_util import AttentionBlock class InferenceModel(GPT2PreTrainedModel): """ Implementation of GPT2PreTrainedModel from transformers, which allows us to use their generation library with this transformer. """ def __init__(self, model): super().__init__(GPT2Config()) self.transformer = model self.context = None def parallelize(self, device_map=None): # Not implemented. pass def deparallelize(self): # Not implemented. pass def get_output_embeddings(self): assert False, "Unsupported operation." def set_output_embeddings(self, new_embeddings): assert False, "Unsupported operation." def store_context(self, context): self.context = context def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs): token_type_ids = kwargs.get("token_type_ids", None) # only last token for inputs_ids if past is defined in kwargs if past: input_ids = input_ids[:, -1].unsqueeze(-1) if token_type_ids is not None: token_type_ids = token_type_ids[:, -1].unsqueeze(-1) attention_mask = kwargs.get("attention_mask", None) position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past: position_ids = position_ids[:, -1].unsqueeze(-1) else: position_ids = None return { "input_ids": input_ids, "past_key_values": past, "use_cache": kwargs.get("use_cache"), "position_ids": position_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } def forward( self, input_ids=None, past_key_values=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): assert self.context is not None assert inputs_embeds is None # Not supported by this inference model. assert labels is None # Training not supported by this inference model. return_dict = return_dict if return_dict is not None else self.config.use_return_dict hidden_states = self.transformer.decoder(input_ids, full_context=self.context, return_embeddings=True) logits = self.transformer.decoder.to_logits(hidden_states) if not return_dict: return (logits, ) return CausalLMOutputWithCrossAttentions( loss=None, logits=logits, past_key_values=None, hidden_states=hidden_states, attentions=None, cross_attentions=None, ) @staticmethod def _reorder_cache(past, beam_idx): """ This function is used to re-order the :obj:`past_key_values` cache if :meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step. """ return tuple( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) for layer_past in past ) class ResBlock(nn.Module): """ Basic residual convolutional block that uses GroupNorm. """ def __init__(self, chan): super().__init__() self.net = nn.Sequential( nn.Conv1d(chan, chan, kernel_size=3, padding=1), nn.GroupNorm(chan//8, chan), nn.ReLU(), nn.Conv1d(chan, chan, kernel_size=3, padding=1), nn.GroupNorm(chan//8, chan) ) def forward(self, x): return F.relu(self.net(x) + x) class ConditioningEncoder(nn.Module): def __init__(self, spec_dim, embedding_dim, attn_blocks=6, num_attn_heads=4, do_checkpointing=False): super().__init__() attn = [] self.init = nn.Sequential(nn.Conv1d(spec_dim, embedding_dim//4, kernel_size=5, padding=2), nn.Conv1d(embedding_dim//4, embedding_dim//2, kernel_size=3, padding=1, stride=2), ResBlock(embedding_dim//2), nn.Conv1d(embedding_dim//2, embedding_dim, kernel_size=3, padding=1, stride=2)) for a in range(attn_blocks): attn.append(AttentionBlock(embedding_dim, num_attn_heads, do_checkpoint=do_checkpointing)) self.attn = nn.Sequential(*attn) self.dim = embedding_dim def forward(self, x): h = self.init(x) h = self.attn(h) return h.mean(dim=2) class AutoregressiveCodegen(nn.Module): def __init__(self, model_dim, depth, num_text_tokens=256, num_mel_tokens=8194, dropout=.1): super().__init__() assert depth >= 8 # This is the minimum bound to support the context interleaving that happens later. self.START_TOKEN=8192 self.STOP_TOKEN=8193 self.max_text_token_id = num_text_tokens self.max_mel_token_id = num_mel_tokens self.mel_embedding = ConditioningEncoder(80, model_dim, do_checkpointing=False) self.encoder = TransformerWrapper( num_tokens=num_text_tokens, use_pos_emb=False, max_seq_len=-1, attn_layers = Encoder( depth=depth, heads=model_dim//64, dim=model_dim, attn_dropout=dropout, ff_dropout=dropout, use_rmsnorm=True, ff_glu=True, ff_mult=1, rotary_pos_emb=True, attn_rel_pos_bias=True, )) self.encoder.norm = nn.Identity() # This layer and the next are unused. self.encoder.to_logits = nn.Identity() self.decoder = TransformerWrapper( num_tokens=num_mel_tokens, use_pos_emb=False, max_seq_len=-1, attn_layers=Decoder( depth=depth, heads=model_dim//64, dim=model_dim, attn_dropout=dropout, ff_dropout=dropout, use_rmsnorm=True, ff_glu=True, ff_mult=1, rotary_pos_emb=True, cross_attend=True, attn_rel_pos_bias=True, )) def get_grad_norm_parameter_groups(self): return { 'encoder': list(self.encoder.parameters()), 'decoder': list(self.decoder.parameters()), 'minicoder': list(self.mel_embedding.parameters()), } def forward(self, text_codes, conditioning_signal, mel_codes, wav_lengths, return_loss=True): assert text_codes.max() < self.max_text_token_id and text_codes.min() >= 0, f'Invalid text code encountered: {text_codes.max()}, {text_codes.min()}' assert mel_codes.max() < self.max_mel_token_id and mel_codes.min() >= 0, f'Invalid mel code encountered: {mel_codes.max()}, {mel_codes.min()}' # Format mel_codes with a stop token on the end. mel_lengths = wav_lengths // 1024 + 1 for b in range(mel_codes.shape[0]): mel_codes[b, mel_lengths[b]:] = self.STOP_TOKEN mel_codes = F.pad(mel_codes, (0, 1), value=self.STOP_TOKEN) # Build the context if len(conditioning_signal.shape) != 4: conditioning_signal = conditioning_signal.unsqueeze(1) cond_embs = [] for i in range(conditioning_signal.shape[1]): cond_embs.append(self.mel_embedding(conditioning_signal[:, i])) cond_emb = torch.stack(cond_embs, dim=1).mean(dim=1, keepdim=True) _, enc_text = self.encoder(text_codes, return_hiddens=True) # Interleave cond_emb into the first few contexts. full_context = enc_text full_context[1] = cond_emb full_context[3] = cond_emb full_context[6] = cond_emb # Execute the decoder dec_inputs = F.pad(mel_codes, (1,0), value=self.START_TOKEN)[:, :-1] dec = self.decoder(dec_inputs, full_context=full_context) if not return_loss: return dec loss_mel = F.cross_entropy(dec.permute(0,2,1), mel_codes) return loss_mel def generate(self, conditioning_signal, text_codes, max_tokens=256, **hf_generate_kwargs): inference_model = InferenceModel(self) # Build the context if len(conditioning_signal.shape) != 4: conditioning_signal = conditioning_signal.unsqueeze(1) cond_embs = [] for i in range(conditioning_signal.shape[1]): cond_embs.append(self.mel_embedding(conditioning_signal[:, i])) cond_emb = torch.stack(cond_embs, dim=1).mean(dim=1, keepdim=True) _, enc_text = self.encoder(text_codes, return_hiddens=True) # Interleave cond_emb into the first few contexts. full_context = enc_text full_context[1] = cond_emb full_context[3] = cond_emb full_context[6] = cond_emb inference_model.store_context(full_context) gen = inference_model.generate(bos_token_id=self.START_TOKEN, pad_token_id=self.STOP_TOKEN, eos_token_id=self.STOP_TOKEN, max_length=max_tokens, output_attentions=False, return_dict_in_generate=True, **hf_generate_kwargs) return gen.sequences if __name__ == '__main__': codegen = AutoregressiveCodegen(256, 10) torch.save(codegen.state_dict(), 'sample.pth') #codegen.generate(torch.randn((1,80,120)), torch.randint(0,256,(1,200))) codegen(torch.randint(0,256, (2,200)), torch.randn(2,80,120), torch.randint(0,8192, (2,350)), torch.tensor([192,350]))