import os import functools import math import torch import torch.nn as nn import torch.nn.functional as F import torchaudio from .xtransformers import ContinuousTransformerWrapper, RelativePositionBias def zero_module(module): """ Zero out the parameters of a module and return it. """ for p in module.parameters(): p.detach().zero_() return module class GroupNorm32(nn.GroupNorm): def forward(self, x): return super().forward(x.float()).type(x.dtype) def normalization(channels): """ Make a standard normalization layer. :param channels: number of input channels. :return: an nn.Module for normalization. """ groups = 32 if channels <= 16: groups = 8 elif channels <= 64: groups = 16 while channels % groups != 0: groups = int(groups / 2) assert groups > 2 return GroupNorm32(groups, channels) class QKVAttentionLegacy(nn.Module): """ A module which performs QKV attention. Matches legacy QKVAttention + input/output heads shaping """ def __init__(self, n_heads): super().__init__() self.n_heads = n_heads def forward(self, qkv, mask=None, rel_pos=None): """ Apply QKV attention. :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs. :return: an [N x (H * C) x T] tensor after attention. """ bs, width, length = qkv.shape assert width % (3 * self.n_heads) == 0 ch = width // (3 * self.n_heads) q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1) scale = 1 / math.sqrt(math.sqrt(ch)) weight = torch.einsum( "bct,bcs->bts", q * scale, k * scale ) # More stable with f16 than dividing afterwards if rel_pos is not None: weight = rel_pos(weight.reshape(bs, self.n_heads, weight.shape[-2], weight.shape[-1])).reshape(bs * self.n_heads, weight.shape[-2], weight.shape[-1]) weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) if mask is not None: # The proper way to do this is to mask before the softmax using -inf, but that doesn't work properly on CPUs. mask = mask.repeat(self.n_heads, 1).unsqueeze(1) weight = weight * mask a = torch.einsum("bts,bcs->bct", weight, v) return a.reshape(bs, -1, length) class AttentionBlock(nn.Module): """ An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted to the N-d case. https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. """ def __init__( self, channels, num_heads=1, num_head_channels=-1, do_checkpoint=True, relative_pos_embeddings=False, ): super().__init__() self.channels = channels self.do_checkpoint = do_checkpoint if num_head_channels == -1: self.num_heads = num_heads else: assert ( channels % num_head_channels == 0 ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" self.num_heads = channels // num_head_channels self.norm = normalization(channels) self.qkv = nn.Conv1d(channels, channels * 3, 1) # split heads before split qkv self.attention = QKVAttentionLegacy(self.num_heads) self.proj_out = zero_module(nn.Conv1d(channels, channels, 1)) if relative_pos_embeddings: self.relative_pos_embeddings = RelativePositionBias(scale=(channels // self.num_heads) ** .5, causal=False, heads=num_heads, num_buckets=32, max_distance=64) else: self.relative_pos_embeddings = None def forward(self, x, mask=None): b, c, *spatial = x.shape x = x.reshape(b, c, -1) qkv = self.qkv(self.norm(x)) h = self.attention(qkv, mask, self.relative_pos_embeddings) h = self.proj_out(h) return (x + h).reshape(b, c, *spatial) class Upsample(nn.Module): """ An upsampling layer with an optional convolution. :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is applied. """ def __init__(self, channels, use_conv, out_channels=None, factor=4): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.factor = factor if use_conv: ksize = 5 pad = 2 self.conv = nn.Conv1d(self.channels, self.out_channels, ksize, padding=pad) def forward(self, x): assert x.shape[1] == self.channels x = F.interpolate(x, scale_factor=self.factor, mode="nearest") if self.use_conv: x = self.conv(x) return x class Downsample(nn.Module): """ A downsampling layer with an optional convolution. :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is applied. """ def __init__(self, channels, use_conv, out_channels=None, factor=4, ksize=5, pad=2): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv stride = factor if use_conv: self.op = nn.Conv1d( self.channels, self.out_channels, ksize, stride=stride, padding=pad ) else: assert self.channels == self.out_channels self.op = nn.AvgPool1d(kernel_size=stride, stride=stride) def forward(self, x): assert x.shape[1] == self.channels return self.op(x) class ResBlock(nn.Module): def __init__( self, channels, dropout, out_channels=None, use_conv=False, use_scale_shift_norm=False, up=False, down=False, kernel_size=3, ): super().__init__() self.channels = channels self.dropout = dropout self.out_channels = out_channels or channels self.use_conv = use_conv self.use_scale_shift_norm = use_scale_shift_norm padding = 1 if kernel_size == 3 else 2 self.in_layers = nn.Sequential( normalization(channels), nn.SiLU(), nn.Conv1d(channels, self.out_channels, kernel_size, padding=padding), ) self.updown = up or down if up: self.h_upd = Upsample(channels, False) self.x_upd = Upsample(channels, False) elif down: self.h_upd = Downsample(channels, False) self.x_upd = Downsample(channels, False) else: self.h_upd = self.x_upd = nn.Identity() self.out_layers = nn.Sequential( normalization(self.out_channels), nn.SiLU(), nn.Dropout(p=dropout), zero_module( nn.Conv1d(self.out_channels, self.out_channels, kernel_size, padding=padding) ), ) if self.out_channels == channels: self.skip_connection = nn.Identity() elif use_conv: self.skip_connection = nn.Conv1d( channels, self.out_channels, kernel_size, padding=padding ) else: self.skip_connection = nn.Conv1d(channels, self.out_channels, 1) def forward(self, x): if self.updown: in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] h = in_rest(x) h = self.h_upd(h) x = self.x_upd(x) h = in_conv(h) else: h = self.in_layers(x) h = self.out_layers(h) return self.skip_connection(x) + h class AudioMiniEncoder(nn.Module): def __init__(self, spec_dim, embedding_dim, base_channels=128, depth=2, resnet_blocks=2, attn_blocks=4, num_attn_heads=4, dropout=0, downsample_factor=2, kernel_size=3): super().__init__() self.init = nn.Sequential( nn.Conv1d(spec_dim, base_channels, 3, padding=1) ) ch = base_channels res = [] for l in range(depth): for r in range(resnet_blocks): res.append(ResBlock(ch, dropout, kernel_size=kernel_size)) res.append(Downsample(ch, use_conv=True, out_channels=ch*2, factor=downsample_factor)) ch *= 2 self.res = nn.Sequential(*res) self.final = nn.Sequential( normalization(ch), nn.SiLU(), nn.Conv1d(ch, embedding_dim, 1) ) attn = [] for a in range(attn_blocks): attn.append(AttentionBlock(embedding_dim, num_attn_heads,)) self.attn = nn.Sequential(*attn) self.dim = embedding_dim def forward(self, x): h = self.init(x) h = self.res(h) h = self.final(h) h = self.attn(h) return h[:, :, 0] DEFAULT_MEL_NORM_FILE = os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../data/mel_norms.pth') class TorchMelSpectrogram(nn.Module): def __init__(self, filter_length=1024, hop_length=256, win_length=1024, n_mel_channels=80, mel_fmin=0, mel_fmax=8000, sampling_rate=22050, normalize=False, mel_norm_file=DEFAULT_MEL_NORM_FILE): super().__init__() # These are the default tacotron values for the MEL spectrogram. self.filter_length = filter_length self.hop_length = hop_length self.win_length = win_length self.n_mel_channels = n_mel_channels self.mel_fmin = mel_fmin self.mel_fmax = mel_fmax self.sampling_rate = sampling_rate self.mel_stft = torchaudio.transforms.MelSpectrogram(n_fft=self.filter_length, hop_length=self.hop_length, win_length=self.win_length, power=2, normalized=normalize, sample_rate=self.sampling_rate, f_min=self.mel_fmin, f_max=self.mel_fmax, n_mels=self.n_mel_channels, norm="slaney") self.mel_norm_file = mel_norm_file if self.mel_norm_file is not None: self.mel_norms = torch.load(self.mel_norm_file) else: self.mel_norms = None def forward(self, inp): if len(inp.shape) == 3: # Automatically squeeze out the channels dimension if it is present (assuming mono-audio) inp = inp.squeeze(1) assert len(inp.shape) == 2 self.mel_stft = self.mel_stft.to(inp.device) mel = self.mel_stft(inp) # Perform dynamic range compression mel = torch.log(torch.clamp(mel, min=1e-5)) if self.mel_norms is not None: self.mel_norms = self.mel_norms.to(mel.device) mel = mel / self.mel_norms.unsqueeze(0).unsqueeze(-1) return mel class CheckpointedLayer(nn.Module): """ Wraps a module. When forward() is called, passes kwargs that require_grad through torch.checkpoint() and bypasses checkpoint for all other args. """ def __init__(self, wrap): super().__init__() self.wrap = wrap def forward(self, x, *args, **kwargs): for k, v in kwargs.items(): assert not (isinstance(v, torch.Tensor) and v.requires_grad) # This would screw up checkpointing. partial = functools.partial(self.wrap, **kwargs) return partial(x, *args) class CheckpointedXTransformerEncoder(nn.Module): """ Wraps a ContinuousTransformerWrapper and applies CheckpointedLayer to each layer and permutes from channels-mid to channels-last that XTransformer expects. """ def __init__(self, needs_permute=True, exit_permute=True, checkpoint=True, **xtransformer_kwargs): super().__init__() self.transformer = ContinuousTransformerWrapper(**xtransformer_kwargs) self.needs_permute = needs_permute self.exit_permute = exit_permute if not checkpoint: return for i in range(len(self.transformer.attn_layers.layers)): n, b, r = self.transformer.attn_layers.layers[i] self.transformer.attn_layers.layers[i] = nn.ModuleList([n, CheckpointedLayer(b), r]) def forward(self, x, **kwargs): if self.needs_permute: x = x.permute(0,2,1) h = self.transformer(x, **kwargs) if self.exit_permute: h = h.permute(0,2,1) return h """ BSD 3-Clause License Copyright (c) 2017, Prem Seetharaman All rights reserved. * Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import math import torch import numpy as np import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from scipy.signal import get_window from librosa.util import pad_center, tiny import librosa.util as librosa_util def window_sumsquare(window, n_frames, hop_length=200, win_length=800, n_fft=800, dtype=np.float32, norm=None): """ # from librosa 0.6 Compute the sum-square envelope of a window function at a given hop length. This is used to estimate modulation effects induced by windowing observations in short-time fourier transforms. Parameters ---------- window : string, tuple, number, callable, or list-like Window specification, as in `get_window` n_frames : int > 0 The number of analysis frames hop_length : int > 0 The number of samples to advance between frames win_length : [optional] The length of the window function. By default, this matches `n_fft`. n_fft : int > 0 The length of each analysis frame. dtype : np.dtype The data type of the output Returns ------- wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))` The sum-squared envelope of the window function """ if win_length is None: win_length = n_fft n = n_fft + hop_length * (n_frames - 1) x = np.zeros(n, dtype=dtype) # Compute the squared window at the desired length win_sq = get_window(window, win_length, fftbins=True) win_sq = librosa_util.normalize(win_sq, norm=norm)**2 win_sq = librosa_util.pad_center(win_sq, n_fft) # Fill the envelope for i in range(n_frames): sample = i * hop_length x[sample:min(n, sample + n_fft)] += win_sq[:max(0, min(n_fft, n - sample))] return x TACOTRON_MEL_MAX = 2.3143386840820312 TACOTRON_MEL_MIN = -11.512925148010254 def denormalize_tacotron_mel(norm_mel): return ((norm_mel+1)/2)*(TACOTRON_MEL_MAX-TACOTRON_MEL_MIN)+TACOTRON_MEL_MIN def normalize_tacotron_mel(mel): return 2 * ((mel - TACOTRON_MEL_MIN) / (TACOTRON_MEL_MAX - TACOTRON_MEL_MIN)) - 1 def dynamic_range_compression(x, C=1, clip_val=1e-5): """ PARAMS ------ C: compression factor """ return torch.log(torch.clamp(x, min=clip_val) * C) def dynamic_range_decompression(x, C=1): """ PARAMS ------ C: compression factor used to compress """ return torch.exp(x) / C class STFT(torch.nn.Module): """adapted from Prem Seetharaman's https://github.com/pseeth/pytorch-stft""" def __init__(self, filter_length=800, hop_length=200, win_length=800, window='hann'): super(STFT, self).__init__() self.filter_length = filter_length self.hop_length = hop_length self.win_length = win_length self.window = window self.forward_transform = None scale = self.filter_length / self.hop_length fourier_basis = np.fft.fft(np.eye(self.filter_length)) cutoff = int((self.filter_length / 2 + 1)) fourier_basis = np.vstack([np.real(fourier_basis[:cutoff, :]), np.imag(fourier_basis[:cutoff, :])]) forward_basis = torch.FloatTensor(fourier_basis[:, None, :]) inverse_basis = torch.FloatTensor( np.linalg.pinv(scale * fourier_basis).T[:, None, :]) if window is not None: assert(filter_length >= win_length) # get window and zero center pad it to filter_length fft_window = get_window(window, win_length, fftbins=True) fft_window = pad_center(fft_window, size=filter_length) fft_window = torch.from_numpy(fft_window).float() # window the bases forward_basis *= fft_window inverse_basis *= fft_window self.register_buffer('forward_basis', forward_basis.float()) self.register_buffer('inverse_basis', inverse_basis.float()) def transform(self, input_data): num_batches = input_data.size(0) num_samples = input_data.size(1) self.num_samples = num_samples # similar to librosa, reflect-pad the input input_data = input_data.view(num_batches, 1, num_samples) input_data = F.pad( input_data.unsqueeze(1), (int(self.filter_length / 2), int(self.filter_length / 2), 0, 0), mode='reflect') input_data = input_data.squeeze(1) forward_transform = F.conv1d( input_data, Variable(self.forward_basis, requires_grad=False), stride=self.hop_length, padding=0) cutoff = int((self.filter_length / 2) + 1) real_part = forward_transform[:, :cutoff, :] imag_part = forward_transform[:, cutoff:, :] magnitude = torch.sqrt(real_part**2 + imag_part**2) phase = torch.autograd.Variable( torch.atan2(imag_part.data, real_part.data)) return magnitude, phase def inverse(self, magnitude, phase): recombine_magnitude_phase = torch.cat( [magnitude*torch.cos(phase), magnitude*torch.sin(phase)], dim=1) inverse_transform = F.conv_transpose1d( recombine_magnitude_phase, Variable(self.inverse_basis, requires_grad=False), stride=self.hop_length, padding=0) if self.window is not None: window_sum = window_sumsquare( self.window, magnitude.size(-1), hop_length=self.hop_length, win_length=self.win_length, n_fft=self.filter_length, dtype=np.float32) # remove modulation effects approx_nonzero_indices = torch.from_numpy( np.where(window_sum > tiny(window_sum))[0]) window_sum = torch.autograd.Variable( torch.from_numpy(window_sum), requires_grad=False) window_sum = window_sum.cuda() if magnitude.is_cuda else window_sum inverse_transform[:, :, approx_nonzero_indices] /= window_sum[approx_nonzero_indices] # scale by hop ratio inverse_transform *= float(self.filter_length) / self.hop_length inverse_transform = inverse_transform[:, :, int(self.filter_length/2):] inverse_transform = inverse_transform[:, :, :-int(self.filter_length/2):] return inverse_transform def forward(self, input_data): self.magnitude, self.phase = self.transform(input_data) reconstruction = self.inverse(self.magnitude, self.phase) return reconstruction class TacotronSTFT(torch.nn.Module): def __init__( self, filter_length=1024, hop_length=256, win_length=1024, n_mel_channels=80, sampling_rate=22050, mel_fmin=0.0, mel_fmax=8000.0 ): super().__init__() self.n_mel_channels = n_mel_channels self.sampling_rate = sampling_rate self.stft_fn = STFT(filter_length, hop_length, win_length) from librosa.filters import mel as librosa_mel_fn mel_basis = librosa_mel_fn( sr=sampling_rate, n_fft=filter_length, n_mels=n_mel_channels, fmin=mel_fmin, fmax=mel_fmax) mel_basis = torch.from_numpy(mel_basis).float() self.register_buffer('mel_basis', mel_basis) def spectral_normalize(self, magnitudes): output = dynamic_range_compression(magnitudes) return output def spectral_de_normalize(self, magnitudes): output = dynamic_range_decompression(magnitudes) return output def mel_spectrogram(self, y): assert(torch.min(y.data) >= -10) assert(torch.max(y.data) <= 10) y = torch.clip(y, min=-1, max=1) magnitudes, phases = self.stft_fn.transform(y) magnitudes = magnitudes.data mel_output = torch.matmul(self.mel_basis, magnitudes) mel_output = self.spectral_normalize(mel_output) return mel_output