tortoise-tts/app.py

168 lines
5.7 KiB
Python
Executable File

import os
import argparse
import gradio as gr
import torchaudio
import time
from datetime import datetime
from tortoise.api import TextToSpeech
from tortoise.utils.audio import load_audio, load_voice, load_voices
def inference(text, emotion, prompt, voice, mic_audio, preset, seed, candidates, num_autoregressive_samples, diffusion_iterations, temperature, progress=gr.Progress()):
if voice != "microphone":
voices = [voice]
else:
voices = []
if emotion == "Custom" and prompt.strip() != "":
text = f"[{prompt},] {text}"
elif emotion != "None":
text = f"[I am really {emotion.lower()},] {text}"
c = None
if voice == "microphone":
if mic_audio is None:
raise gr.Error("Please provide audio from mic when choosing `microphone` as a voice input")
c = load_audio(mic_audio, 22050)
if len(voices) == 1 or len(voices) == 0:
if voice == "microphone":
voice_samples, conditioning_latents = [c], None
else:
voice_samples, conditioning_latents = load_voice(voice)
else:
voice_samples, conditioning_latents = load_voices(voices)
if voice == "microphone":
voice_samples.extend([c])
sample_voice = voice_samples[0] if len(voice_samples) else None
if seed == 0:
seed = None
start_time = time.time()
# >b-buh why not set samples and iterations to nullllll
# shut up
if preset == "none":
gen, additionals = tts.tts_with_preset(
text,
voice_samples=voice_samples,
conditioning_latents=conditioning_latents,
preset="standard",
use_deterministic_seed=seed,
return_deterministic_state=True,
k=candidates,
num_autoregressive_samples=num_autoregressive_samples,
diffusion_iterations=diffusion_iterations,
temperature=temperature,
progress=progress
)
seed = additionals[0]
else:
gen, additionals = tts.tts_with_preset(
text,
voice_samples=voice_samples,
conditioning_latents=conditioning_latents,
preset=preset,
use_deterministic_seed=seed,
return_deterministic_state=True,
k=candidates,
temperature=temperature,
progress=progress
)
seed = additionals[0]
info = f"{datetime.now()} | Voice: {','.join(voices)} | Text: {text} | Quality: {preset} preset / {num_autoregressive_samples} samples / {diffusion_iterations} iterations | Temperature: {temperature} | Time Taken (s): {time.time()-start_time} | Seed: {seed}\n"
with open("results.log", "a") as f:
f.write(info)
timestamp = int(time.time())
outdir = f"./results/{voice}/{timestamp}/"
os.makedirs(outdir, exist_ok=True)
with open(os.path.join(outdir, f'input.txt'), 'w') as f:
f.write(f"{text}\n\n{info}")
if isinstance(gen, list):
for j, g in enumerate(gen):
torchaudio.save(os.path.join(outdir, f'result_{j}.wav'), g.squeeze(0).cpu(), 24000)
return (
(22050, sample_voice.squeeze().cpu().numpy()),
(24000, gen[0].squeeze().cpu().numpy()),
seed
)
else:
torchaudio.save(os.path.join(outdir, f'result.wav'), gen.squeeze(0).cpu(), 24000)
return (
(22050, sample_voice.squeeze().cpu().numpy()),
(24000, gen.squeeze().cpu().numpy()),
seed
)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--share", action='store_true', help="Lets Gradio return a public URL to use anywhere")
args = parser.parse_args()
text = gr.Textbox(lines=4, label="Prompt")
emotion = gr.Radio(
["None", "Happy", "Sad", "Angry", "Disgusted", "Arrogant", "Custom"],
value="None",
label="Emotion",
type="value",
)
prompt = gr.Textbox(lines=1, label="Custom Emotion (if selected)")
preset = gr.Radio(
["ultra_fast", "fast", "standard", "high_quality", "none"],
value="none",
label="Preset",
type="value",
)
candidates = gr.Slider(value=1, minimum=1, maximum=6, label="Candidates")
num_autoregressive_samples = gr.Slider(value=128, minimum=0, maximum=512, step=1, label="Samples")
diffusion_iterations = gr.Slider(value=128, minimum=0, maximum=512, step=1, label="Iterations")
temperature = gr.Slider(value=0.2, minimum=0, maximum=1, step=0.1, label="Temperature")
voice = gr.Dropdown(
os.listdir(os.path.join("tortoise", "voices")) + ["random", "microphone", "disabled"],
label="Voice",
type="value",
)
mic_audio = gr.Audio(
label="Microphone Source",
source="microphone",
type="filepath",
)
seed = gr.Number(value=0, precision=0, label="Seed")
selected_voice = gr.Audio(label="Source Sample")
output_audio = gr.Audio(label="Output")
usedSeed = gr.Textbox(label="Seed", placeholder="0", interactive=False)
interface = gr.Interface(
fn=inference,
inputs=[
text,
emotion,
prompt,
voice,
mic_audio,
preset,
seed,
candidates,
num_autoregressive_samples,
diffusion_iterations,
temperature
],
outputs=[selected_voice, output_audio, usedSeed],
allow_flagging=False
)
interface.queue().launch(share=args.share)
if __name__ == "__main__":
tts = TextToSpeech()
main()