772 lines
24 KiB
Python
772 lines
24 KiB
Python
import torch
|
||
import torch.nn as nn
|
||
import torch.nn.functional as F
|
||
|
||
import math
|
||
|
||
import json
|
||
import os
|
||
import torch.utils.data
|
||
|
||
from torch import nn, sin, pow
|
||
from torch.nn import Conv1d, ConvTranspose1d, Conv2d, Parameter
|
||
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
||
from librosa.filters import mel as librosa_mel_fn
|
||
|
||
|
||
# filter.py
|
||
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
||
# LICENSE is in incl_licenses directory.
|
||
|
||
if 'sinc' in dir(torch):
|
||
sinc = torch.sinc
|
||
else:
|
||
# This code is adopted from adefossez's julius.core.sinc under the MIT License
|
||
# https://adefossez.github.io/julius/julius/core.html
|
||
# LICENSE is in incl_licenses directory.
|
||
def sinc(x: torch.Tensor):
|
||
"""
|
||
Implementation of sinc, i.e. sin(pi * x) / (pi * x)
|
||
__Warning__: Different to julius.sinc, the input is multiplied by `pi`!
|
||
"""
|
||
return torch.where(x == 0,
|
||
torch.tensor(1., device=x.device, dtype=x.dtype),
|
||
torch.sin(math.pi * x) / math.pi / x)
|
||
|
||
|
||
# This code is adopted from adefossez's julius.lowpass.LowPassFilters under the MIT License
|
||
# https://adefossez.github.io/julius/julius/lowpass.html
|
||
# LICENSE is in incl_licenses directory.
|
||
def kaiser_sinc_filter1d(cutoff, half_width, kernel_size): # return filter [1,1,kernel_size]
|
||
even = (kernel_size % 2 == 0)
|
||
half_size = kernel_size // 2
|
||
|
||
#For kaiser window
|
||
delta_f = 4 * half_width
|
||
A = 2.285 * (half_size - 1) * math.pi * delta_f + 7.95
|
||
if A > 50.:
|
||
beta = 0.1102 * (A - 8.7)
|
||
elif A >= 21.:
|
||
beta = 0.5842 * (A - 21)**0.4 + 0.07886 * (A - 21.)
|
||
else:
|
||
beta = 0.
|
||
window = torch.kaiser_window(kernel_size, beta=beta, periodic=False)
|
||
|
||
# ratio = 0.5/cutoff -> 2 * cutoff = 1 / ratio
|
||
if even:
|
||
time = (torch.arange(-half_size, half_size) + 0.5)
|
||
else:
|
||
time = torch.arange(kernel_size) - half_size
|
||
if cutoff == 0:
|
||
filter_ = torch.zeros_like(time)
|
||
else:
|
||
filter_ = 2 * cutoff * window * sinc(2 * cutoff * time)
|
||
# Normalize filter to have sum = 1, otherwise we will have a small leakage
|
||
# of the constant component in the input signal.
|
||
filter_ /= filter_.sum()
|
||
filter = filter_.view(1, 1, kernel_size)
|
||
|
||
return filter
|
||
|
||
|
||
class LowPassFilter1d(nn.Module):
|
||
def __init__(self,
|
||
cutoff=0.5,
|
||
half_width=0.6,
|
||
stride: int = 1,
|
||
padding: bool = True,
|
||
padding_mode: str = 'replicate',
|
||
kernel_size: int = 12):
|
||
# kernel_size should be even number for stylegan3 setup,
|
||
# in this implementation, odd number is also possible.
|
||
super().__init__()
|
||
if cutoff < -0.:
|
||
raise ValueError("Minimum cutoff must be larger than zero.")
|
||
if cutoff > 0.5:
|
||
raise ValueError("A cutoff above 0.5 does not make sense.")
|
||
self.kernel_size = kernel_size
|
||
self.even = (kernel_size % 2 == 0)
|
||
self.pad_left = kernel_size // 2 - int(self.even)
|
||
self.pad_right = kernel_size // 2
|
||
self.stride = stride
|
||
self.padding = padding
|
||
self.padding_mode = padding_mode
|
||
filter = kaiser_sinc_filter1d(cutoff, half_width, kernel_size)
|
||
self.register_buffer("filter", filter)
|
||
|
||
#input [B, C, T]
|
||
def forward(self, x):
|
||
_, C, _ = x.shape
|
||
|
||
if self.padding:
|
||
x = F.pad(x, (self.pad_left, self.pad_right),
|
||
mode=self.padding_mode)
|
||
out = F.conv1d(x, self.filter.expand(C, -1, -1),
|
||
stride=self.stride, groups=C)
|
||
|
||
return out
|
||
|
||
# resample.py
|
||
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
||
# LICENSE is in incl_licenses directory.
|
||
|
||
class UpSample1d(nn.Module):
|
||
def __init__(self, ratio=2, kernel_size=None):
|
||
super().__init__()
|
||
self.ratio = ratio
|
||
self.kernel_size = int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
|
||
self.stride = ratio
|
||
self.pad = self.kernel_size // ratio - 1
|
||
self.pad_left = self.pad * self.stride + (self.kernel_size - self.stride) // 2
|
||
self.pad_right = self.pad * self.stride + (self.kernel_size - self.stride + 1) // 2
|
||
filter = kaiser_sinc_filter1d(cutoff=0.5 / ratio,
|
||
half_width=0.6 / ratio,
|
||
kernel_size=self.kernel_size)
|
||
self.register_buffer("filter", filter)
|
||
|
||
# x: [B, C, T]
|
||
def forward(self, x):
|
||
_, C, _ = x.shape
|
||
|
||
x = F.pad(x, (self.pad, self.pad), mode='replicate')
|
||
x = self.ratio * F.conv_transpose1d(
|
||
x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C)
|
||
x = x[..., self.pad_left:-self.pad_right]
|
||
|
||
return x
|
||
|
||
|
||
class DownSample1d(nn.Module):
|
||
def __init__(self, ratio=2, kernel_size=None):
|
||
super().__init__()
|
||
self.ratio = ratio
|
||
self.kernel_size = int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
|
||
self.lowpass = LowPassFilter1d(cutoff=0.5 / ratio,
|
||
half_width=0.6 / ratio,
|
||
stride=ratio,
|
||
kernel_size=self.kernel_size)
|
||
|
||
def forward(self, x):
|
||
xx = self.lowpass(x)
|
||
|
||
return xx
|
||
|
||
# act.py
|
||
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
||
# LICENSE is in incl_licenses directory.
|
||
|
||
class Activation1d(nn.Module):
|
||
def __init__(self,
|
||
activation,
|
||
up_ratio: int = 2,
|
||
down_ratio: int = 2,
|
||
up_kernel_size: int = 12,
|
||
down_kernel_size: int = 12):
|
||
super().__init__()
|
||
self.up_ratio = up_ratio
|
||
self.down_ratio = down_ratio
|
||
self.act = activation
|
||
self.upsample = UpSample1d(up_ratio, up_kernel_size)
|
||
self.downsample = DownSample1d(down_ratio, down_kernel_size)
|
||
|
||
# x: [B,C,T]
|
||
def forward(self, x):
|
||
x = self.upsample(x)
|
||
x = self.act(x)
|
||
x = self.downsample(x)
|
||
|
||
return x
|
||
|
||
# activations.py
|
||
# Implementation adapted from https://github.com/EdwardDixon/snake under the MIT license.
|
||
# LICENSE is in incl_licenses directory.
|
||
|
||
class Snake(nn.Module):
|
||
'''
|
||
Implementation of a sine-based periodic activation function
|
||
Shape:
|
||
- Input: (B, C, T)
|
||
- Output: (B, C, T), same shape as the input
|
||
Parameters:
|
||
- alpha - trainable parameter
|
||
References:
|
||
- This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
|
||
https://arxiv.org/abs/2006.08195
|
||
Examples:
|
||
>>> a1 = snake(256)
|
||
>>> x = torch.randn(256)
|
||
>>> x = a1(x)
|
||
'''
|
||
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
|
||
'''
|
||
Initialization.
|
||
INPUT:
|
||
- in_features: shape of the input
|
||
- alpha: trainable parameter
|
||
alpha is initialized to 1 by default, higher values = higher-frequency.
|
||
alpha will be trained along with the rest of your model.
|
||
'''
|
||
super(Snake, self).__init__()
|
||
self.in_features = in_features
|
||
|
||
# initialize alpha
|
||
self.alpha_logscale = alpha_logscale
|
||
if self.alpha_logscale: # log scale alphas initialized to zeros
|
||
self.alpha = Parameter(torch.zeros(in_features) * alpha)
|
||
else: # linear scale alphas initialized to ones
|
||
self.alpha = Parameter(torch.ones(in_features) * alpha)
|
||
|
||
self.alpha.requires_grad = alpha_trainable
|
||
|
||
self.no_div_by_zero = 0.000000001
|
||
|
||
def forward(self, x):
|
||
'''
|
||
Forward pass of the function.
|
||
Applies the function to the input elementwise.
|
||
Snake ∶= x + 1/a * sin^2 (xa)
|
||
'''
|
||
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
|
||
if self.alpha_logscale:
|
||
alpha = torch.exp(alpha)
|
||
x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
|
||
|
||
return x
|
||
|
||
|
||
class SnakeBeta(nn.Module):
|
||
'''
|
||
A modified Snake function which uses separate parameters for the magnitude of the periodic components
|
||
Shape:
|
||
- Input: (B, C, T)
|
||
- Output: (B, C, T), same shape as the input
|
||
Parameters:
|
||
- alpha - trainable parameter that controls frequency
|
||
- beta - trainable parameter that controls magnitude
|
||
References:
|
||
- This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
|
||
https://arxiv.org/abs/2006.08195
|
||
Examples:
|
||
>>> a1 = snakebeta(256)
|
||
>>> x = torch.randn(256)
|
||
>>> x = a1(x)
|
||
'''
|
||
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
|
||
'''
|
||
Initialization.
|
||
INPUT:
|
||
- in_features: shape of the input
|
||
- alpha - trainable parameter that controls frequency
|
||
- beta - trainable parameter that controls magnitude
|
||
alpha is initialized to 1 by default, higher values = higher-frequency.
|
||
beta is initialized to 1 by default, higher values = higher-magnitude.
|
||
alpha will be trained along with the rest of your model.
|
||
'''
|
||
super(SnakeBeta, self).__init__()
|
||
self.in_features = in_features
|
||
|
||
# initialize alpha
|
||
self.alpha_logscale = alpha_logscale
|
||
if self.alpha_logscale: # log scale alphas initialized to zeros
|
||
self.alpha = Parameter(torch.zeros(in_features) * alpha)
|
||
self.beta = Parameter(torch.zeros(in_features) * alpha)
|
||
else: # linear scale alphas initialized to ones
|
||
self.alpha = Parameter(torch.ones(in_features) * alpha)
|
||
self.beta = Parameter(torch.ones(in_features) * alpha)
|
||
|
||
self.alpha.requires_grad = alpha_trainable
|
||
self.beta.requires_grad = alpha_trainable
|
||
|
||
self.no_div_by_zero = 0.000000001
|
||
|
||
def forward(self, x):
|
||
'''
|
||
Forward pass of the function.
|
||
Applies the function to the input elementwise.
|
||
SnakeBeta ∶= x + 1/b * sin^2 (xa)
|
||
'''
|
||
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
|
||
beta = self.beta.unsqueeze(0).unsqueeze(-1)
|
||
if self.alpha_logscale:
|
||
alpha = torch.exp(alpha)
|
||
beta = torch.exp(beta)
|
||
x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
|
||
|
||
return x
|
||
|
||
# bigvgan.py
|
||
# Copyright (c) 2022 NVIDIA CORPORATION.
|
||
# Licensed under the MIT license.
|
||
|
||
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
|
||
# LICENSE is in incl_licenses directory.
|
||
|
||
LRELU_SLOPE = 0.1
|
||
|
||
class AMPBlock1(torch.nn.Module):
|
||
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5), activation=None):
|
||
super(AMPBlock1, self).__init__()
|
||
self.h = h
|
||
|
||
self.convs1 = nn.ModuleList([
|
||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
||
padding=get_padding(kernel_size, dilation[0]))),
|
||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
||
padding=get_padding(kernel_size, dilation[1]))),
|
||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
||
padding=get_padding(kernel_size, dilation[2])))
|
||
])
|
||
self.convs1.apply(init_weights)
|
||
|
||
self.convs2 = nn.ModuleList([
|
||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
||
padding=get_padding(kernel_size, 1))),
|
||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
||
padding=get_padding(kernel_size, 1))),
|
||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
||
padding=get_padding(kernel_size, 1)))
|
||
])
|
||
self.convs2.apply(init_weights)
|
||
|
||
self.num_layers = len(self.convs1) + len(self.convs2) # total number of conv layers
|
||
|
||
if activation == 'snake': # periodic nonlinearity with snake function and anti-aliasing
|
||
self.activations = nn.ModuleList([
|
||
Activation1d(
|
||
activation=Snake(channels, alpha_logscale=h.snake_logscale))
|
||
for _ in range(self.num_layers)
|
||
])
|
||
elif activation == 'snakebeta': # periodic nonlinearity with snakebeta function and anti-aliasing
|
||
self.activations = nn.ModuleList([
|
||
Activation1d(
|
||
activation=SnakeBeta(channels, alpha_logscale=h.snake_logscale))
|
||
for _ in range(self.num_layers)
|
||
])
|
||
else:
|
||
raise NotImplementedError(
|
||
"activation incorrectly specified. check the config file and look for 'activation'.")
|
||
|
||
def forward(self, x):
|
||
acts1, acts2 = self.activations[::2], self.activations[1::2]
|
||
for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2):
|
||
xt = a1(x)
|
||
xt = c1(xt)
|
||
xt = a2(xt)
|
||
xt = c2(xt)
|
||
x = xt + x
|
||
|
||
return x
|
||
|
||
def remove_weight_norm(self):
|
||
for l in self.convs1:
|
||
remove_weight_norm(l)
|
||
for l in self.convs2:
|
||
remove_weight_norm(l)
|
||
|
||
|
||
class AMPBlock2(torch.nn.Module):
|
||
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3), activation=None):
|
||
super(AMPBlock2, self).__init__()
|
||
self.h = h
|
||
|
||
self.convs = nn.ModuleList([
|
||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
||
padding=get_padding(kernel_size, dilation[0]))),
|
||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
||
padding=get_padding(kernel_size, dilation[1])))
|
||
])
|
||
self.convs.apply(init_weights)
|
||
|
||
self.num_layers = len(self.convs) # total number of conv layers
|
||
|
||
if activation == 'snake': # periodic nonlinearity with snake function and anti-aliasing
|
||
self.activations = nn.ModuleList([
|
||
Activation1d(
|
||
activation=Snake(channels, alpha_logscale=h.snake_logscale))
|
||
for _ in range(self.num_layers)
|
||
])
|
||
elif activation == 'snakebeta': # periodic nonlinearity with snakebeta function and anti-aliasing
|
||
self.activations = nn.ModuleList([
|
||
Activation1d(
|
||
activation=SnakeBeta(channels, alpha_logscale=h.snake_logscale))
|
||
for _ in range(self.num_layers)
|
||
])
|
||
else:
|
||
raise NotImplementedError(
|
||
"activation incorrectly specified. check the config file and look for 'activation'.")
|
||
|
||
def forward(self, x):
|
||
for c, a in zip(self.convs, self.activations):
|
||
xt = a(x)
|
||
xt = c(xt)
|
||
x = xt + x
|
||
|
||
return x
|
||
|
||
def remove_weight_norm(self):
|
||
for l in self.convs:
|
||
remove_weight_norm(l)
|
||
|
||
|
||
|
||
class AttrDict(dict):
|
||
def __init__(self, *args, **kwargs):
|
||
super(AttrDict, self).__init__(*args, **kwargs)
|
||
self.__dict__ = self
|
||
|
||
class BigVGAN(nn.Module):
|
||
# this is our main BigVGAN model. Applies anti-aliased periodic activation for resblocks.
|
||
def __init__(self, config=None, data=None):
|
||
super(BigVGAN, self).__init__()
|
||
|
||
"""
|
||
with open(os.path.join(os.path.dirname(__file__), 'config.json'), 'r') as f:
|
||
data = f.read()
|
||
"""
|
||
if config and data is None:
|
||
with open(config, 'r') as f:
|
||
data = f.read()
|
||
jsonConfig = json.loads(data)
|
||
elif data is not None:
|
||
if isinstance(data, str):
|
||
jsonConfig = json.loads(data)
|
||
else:
|
||
jsonConfig = data
|
||
else:
|
||
raise Exception("no config specified")
|
||
|
||
|
||
global h
|
||
h = AttrDict(jsonConfig)
|
||
|
||
self.mel_channel = h.num_mels
|
||
self.noise_dim = h.n_fft
|
||
self.hop_length = h.hop_size
|
||
self.num_kernels = len(h.resblock_kernel_sizes)
|
||
self.num_upsamples = len(h.upsample_rates)
|
||
|
||
# pre conv
|
||
self.conv_pre = weight_norm(Conv1d(h.num_mels, h.upsample_initial_channel, 7, 1, padding=3))
|
||
|
||
# define which AMPBlock to use. BigVGAN uses AMPBlock1 as default
|
||
resblock = AMPBlock1 if h.resblock == '1' else AMPBlock2
|
||
|
||
# transposed conv-based upsamplers. does not apply anti-aliasing
|
||
self.ups = nn.ModuleList()
|
||
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
|
||
self.ups.append(nn.ModuleList([
|
||
weight_norm(ConvTranspose1d(h.upsample_initial_channel // (2 ** i),
|
||
h.upsample_initial_channel // (2 ** (i + 1)),
|
||
k, u, padding=(k - u) // 2))
|
||
]))
|
||
|
||
# residual blocks using anti-aliased multi-periodicity composition modules (AMP)
|
||
self.resblocks = nn.ModuleList()
|
||
for i in range(len(self.ups)):
|
||
ch = h.upsample_initial_channel // (2 ** (i + 1))
|
||
for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)):
|
||
self.resblocks.append(resblock(h, ch, k, d, activation=h.activation))
|
||
|
||
# post conv
|
||
if h.activation == "snake": # periodic nonlinearity with snake function and anti-aliasing
|
||
activation_post = Snake(ch, alpha_logscale=h.snake_logscale)
|
||
self.activation_post = Activation1d(activation=activation_post)
|
||
elif h.activation == "snakebeta": # periodic nonlinearity with snakebeta function and anti-aliasing
|
||
activation_post = SnakeBeta(ch, alpha_logscale=h.snake_logscale)
|
||
self.activation_post = Activation1d(activation=activation_post)
|
||
else:
|
||
raise NotImplementedError(
|
||
"activation incorrectly specified. check the config file and look for 'activation'.")
|
||
|
||
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
|
||
|
||
# weight initialization
|
||
for i in range(len(self.ups)):
|
||
self.ups[i].apply(init_weights)
|
||
self.conv_post.apply(init_weights)
|
||
|
||
def forward(self,x, c):
|
||
# pre conv
|
||
x = self.conv_pre(x)
|
||
|
||
for i in range(self.num_upsamples):
|
||
# upsampling
|
||
for i_up in range(len(self.ups[i])):
|
||
x = self.ups[i][i_up](x)
|
||
# AMP blocks
|
||
xs = None
|
||
for j in range(self.num_kernels):
|
||
if xs is None:
|
||
xs = self.resblocks[i * self.num_kernels + j](x)
|
||
else:
|
||
xs += self.resblocks[i * self.num_kernels + j](x)
|
||
x = xs / self.num_kernels
|
||
|
||
# post conv
|
||
x = self.activation_post(x)
|
||
x = self.conv_post(x)
|
||
x = torch.tanh(x)
|
||
|
||
return x
|
||
|
||
def remove_weight_norm(self):
|
||
print('Removing weight norm...')
|
||
for l in self.ups:
|
||
for l_i in l:
|
||
remove_weight_norm(l_i)
|
||
for l in self.resblocks:
|
||
l.remove_weight_norm()
|
||
remove_weight_norm(self.conv_pre)
|
||
remove_weight_norm(self.conv_post)
|
||
|
||
def inference(self, c, z=None):
|
||
# pad input mel with zeros to cut artifact
|
||
# see https://github.com/seungwonpark/melgan/issues/8
|
||
zero = torch.full((c.shape[0], h.num_mels, 10), -11.5129).to(c.device)
|
||
mel = torch.cat((c, zero), dim=2)
|
||
|
||
if z is None:
|
||
z = torch.randn(c.shape[0], self.noise_dim, mel.size(2)).to(mel.device)
|
||
|
||
audio = self.forward(mel, z)
|
||
audio = audio[:, :, :-(self.hop_length * 10)]
|
||
audio = audio.clamp(min=-1, max=1)
|
||
return audio
|
||
|
||
def eval(self, inference=False):
|
||
super(BigVGAN, self).eval()
|
||
# don't remove weight norm while validation in training loop
|
||
if inference:
|
||
self.remove_weight_norm()
|
||
|
||
|
||
class DiscriminatorP(nn.Module):
|
||
def __init__(self, h, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
||
super(DiscriminatorP, self).__init__()
|
||
self.period = period
|
||
self.d_mult = h.discriminator_channel_mult
|
||
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
||
self.convs = nn.ModuleList([
|
||
norm_f(Conv2d(1, int(32 * self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
||
norm_f(Conv2d(int(32 * self.d_mult), int(128 * self.d_mult), (kernel_size, 1), (stride, 1),
|
||
padding=(get_padding(5, 1), 0))),
|
||
norm_f(Conv2d(int(128 * self.d_mult), int(512 * self.d_mult), (kernel_size, 1), (stride, 1),
|
||
padding=(get_padding(5, 1), 0))),
|
||
norm_f(Conv2d(int(512 * self.d_mult), int(1024 * self.d_mult), (kernel_size, 1), (stride, 1),
|
||
padding=(get_padding(5, 1), 0))),
|
||
norm_f(Conv2d(int(1024 * self.d_mult), int(1024 * self.d_mult), (kernel_size, 1), 1, padding=(2, 0))),
|
||
])
|
||
self.conv_post = norm_f(Conv2d(int(1024 * self.d_mult), 1, (3, 1), 1, padding=(1, 0)))
|
||
|
||
def forward(self, x):
|
||
fmap = []
|
||
|
||
# 1d to 2d
|
||
b, c, t = x.shape
|
||
if t % self.period != 0: # pad first
|
||
n_pad = self.period - (t % self.period)
|
||
x = F.pad(x, (0, n_pad), "reflect")
|
||
t = t + n_pad
|
||
x = x.view(b, c, t // self.period, self.period)
|
||
|
||
for l in self.convs:
|
||
x = l(x)
|
||
x = F.leaky_relu(x, LRELU_SLOPE)
|
||
fmap.append(x)
|
||
x = self.conv_post(x)
|
||
fmap.append(x)
|
||
x = torch.flatten(x, 1, -1)
|
||
|
||
return x, fmap
|
||
|
||
|
||
class MultiPeriodDiscriminator(nn.Module):
|
||
def __init__(self, h):
|
||
super(MultiPeriodDiscriminator, self).__init__()
|
||
self.mpd_reshapes = h.mpd_reshapes
|
||
print("mpd_reshapes: {}".format(self.mpd_reshapes))
|
||
discriminators = [DiscriminatorP(h, rs, use_spectral_norm=h.use_spectral_norm) for rs in self.mpd_reshapes]
|
||
self.discriminators = nn.ModuleList(discriminators)
|
||
|
||
def forward(self, y, y_hat):
|
||
y_d_rs = []
|
||
y_d_gs = []
|
||
fmap_rs = []
|
||
fmap_gs = []
|
||
for i, d in enumerate(self.discriminators):
|
||
y_d_r, fmap_r = d(y)
|
||
y_d_g, fmap_g = d(y_hat)
|
||
y_d_rs.append(y_d_r)
|
||
fmap_rs.append(fmap_r)
|
||
y_d_gs.append(y_d_g)
|
||
fmap_gs.append(fmap_g)
|
||
|
||
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
||
|
||
|
||
class DiscriminatorR(nn.Module):
|
||
def __init__(self, cfg, resolution):
|
||
super().__init__()
|
||
|
||
self.resolution = resolution
|
||
assert len(self.resolution) == 3, \
|
||
"MRD layer requires list with len=3, got {}".format(self.resolution)
|
||
self.lrelu_slope = LRELU_SLOPE
|
||
|
||
norm_f = weight_norm if cfg.use_spectral_norm == False else spectral_norm
|
||
if hasattr(cfg, "mrd_use_spectral_norm"):
|
||
print("INFO: overriding MRD use_spectral_norm as {}".format(cfg.mrd_use_spectral_norm))
|
||
norm_f = weight_norm if cfg.mrd_use_spectral_norm == False else spectral_norm
|
||
self.d_mult = cfg.discriminator_channel_mult
|
||
if hasattr(cfg, "mrd_channel_mult"):
|
||
print("INFO: overriding mrd channel multiplier as {}".format(cfg.mrd_channel_mult))
|
||
self.d_mult = cfg.mrd_channel_mult
|
||
|
||
self.convs = nn.ModuleList([
|
||
norm_f(nn.Conv2d(1, int(32 * self.d_mult), (3, 9), padding=(1, 4))),
|
||
norm_f(nn.Conv2d(int(32 * self.d_mult), int(32 * self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))),
|
||
norm_f(nn.Conv2d(int(32 * self.d_mult), int(32 * self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))),
|
||
norm_f(nn.Conv2d(int(32 * self.d_mult), int(32 * self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))),
|
||
norm_f(nn.Conv2d(int(32 * self.d_mult), int(32 * self.d_mult), (3, 3), padding=(1, 1))),
|
||
])
|
||
self.conv_post = norm_f(nn.Conv2d(int(32 * self.d_mult), 1, (3, 3), padding=(1, 1)))
|
||
|
||
def forward(self, x):
|
||
fmap = []
|
||
|
||
x = self.spectrogram(x)
|
||
x = x.unsqueeze(1)
|
||
for l in self.convs:
|
||
x = l(x)
|
||
x = F.leaky_relu(x, self.lrelu_slope)
|
||
fmap.append(x)
|
||
x = self.conv_post(x)
|
||
fmap.append(x)
|
||
x = torch.flatten(x, 1, -1)
|
||
|
||
return x, fmap
|
||
|
||
def spectrogram(self, x):
|
||
n_fft, hop_length, win_length = self.resolution
|
||
x = F.pad(x, (int((n_fft - hop_length) / 2), int((n_fft - hop_length) / 2)), mode='reflect')
|
||
x = x.squeeze(1)
|
||
x = torch.stft(x, n_fft=n_fft, hop_length=hop_length, win_length=win_length, center=False, return_complex=True)
|
||
x = torch.view_as_real(x) # [B, F, TT, 2]
|
||
mag = torch.norm(x, p=2, dim=-1) # [B, F, TT]
|
||
|
||
return mag
|
||
|
||
|
||
class MultiResolutionDiscriminator(nn.Module):
|
||
def __init__(self, cfg, debug=False):
|
||
super().__init__()
|
||
self.resolutions = cfg.resolutions
|
||
assert len(self.resolutions) == 3, \
|
||
"MRD requires list of list with len=3, each element having a list with len=3. got {}". \
|
||
format(self.resolutions)
|
||
self.discriminators = nn.ModuleList(
|
||
[DiscriminatorR(cfg, resolution) for resolution in self.resolutions]
|
||
)
|
||
|
||
def forward(self, y, y_hat):
|
||
y_d_rs = []
|
||
y_d_gs = []
|
||
fmap_rs = []
|
||
fmap_gs = []
|
||
|
||
for i, d in enumerate(self.discriminators):
|
||
y_d_r, fmap_r = d(x=y)
|
||
y_d_g, fmap_g = d(x=y_hat)
|
||
y_d_rs.append(y_d_r)
|
||
fmap_rs.append(fmap_r)
|
||
y_d_gs.append(y_d_g)
|
||
fmap_gs.append(fmap_g)
|
||
|
||
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
||
|
||
def get_mel(x):
|
||
return mel_spectrogram(x, h.n_fft, h.num_mels, h.sampling_rate, h.hop_size, h.win_size, h.fmin, h.fmax)
|
||
|
||
def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
|
||
if torch.min(y) < -1.:
|
||
print('min value is ', torch.min(y))
|
||
if torch.max(y) > 1.:
|
||
print('max value is ', torch.max(y))
|
||
|
||
global mel_basis, hann_window
|
||
if fmax not in mel_basis:
|
||
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
||
mel_basis[str(fmax)+'_'+str(y.device)] = torch.from_numpy(mel).float().to(y.device)
|
||
hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device)
|
||
|
||
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
||
y = y.squeeze(1)
|
||
|
||
# complex tensor as default, then use view_as_real for future pytorch compatibility
|
||
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[str(y.device)],
|
||
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=True)
|
||
spec = torch.view_as_real(spec)
|
||
spec = torch.sqrt(spec.pow(2).sum(-1)+(1e-9))
|
||
|
||
spec = torch.matmul(mel_basis[str(fmax)+'_'+str(y.device)], spec)
|
||
spec = torch.nn.utils.spectral_normalize_torch(spec)
|
||
|
||
return spec
|
||
|
||
def feature_loss(fmap_r, fmap_g):
|
||
loss = 0
|
||
for dr, dg in zip(fmap_r, fmap_g):
|
||
for rl, gl in zip(dr, dg):
|
||
loss += torch.mean(torch.abs(rl - gl))
|
||
|
||
return loss * 2
|
||
|
||
|
||
def init_weights(m, mean=0.0, std=0.01):
|
||
classname = m.__class__.__name__
|
||
if classname.find("Conv") != -1:
|
||
m.weight.data.normal_(mean, std)
|
||
|
||
|
||
def get_padding(kernel_size, dilation=1):
|
||
return int((kernel_size * dilation - dilation) / 2)
|
||
|
||
|
||
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
||
loss = 0
|
||
r_losses = []
|
||
g_losses = []
|
||
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
||
r_loss = torch.mean((1 - dr) ** 2)
|
||
g_loss = torch.mean(dg ** 2)
|
||
loss += (r_loss + g_loss)
|
||
r_losses.append(r_loss.item())
|
||
g_losses.append(g_loss.item())
|
||
|
||
return loss, r_losses, g_losses
|
||
|
||
|
||
def generator_loss(disc_outputs):
|
||
loss = 0
|
||
gen_losses = []
|
||
for dg in disc_outputs:
|
||
l = torch.mean((1 - dg) ** 2)
|
||
gen_losses.append(l)
|
||
loss += l
|
||
|
||
return loss, gen_losses
|
||
|
||
|
||
if __name__ == '__main__':
|
||
model = BigVGAN()
|
||
|
||
c = torch.randn(3, 100, 10)
|
||
z = torch.randn(3, 64, 10)
|
||
print(c.shape)
|
||
|
||
y = model(c, z)
|
||
print(y.shape)
|
||
assert y.shape == torch.Size([3, 1, 2560])
|
||
|
||
pytorch_total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
||
print(pytorch_total_params) |