163 lines
5.8 KiB
Python
163 lines
5.8 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from torch import einsum
|
|
|
|
from tortoise.models.arch_util import CheckpointedXTransformerEncoder
|
|
from tortoise.models.transformer import Transformer
|
|
from tortoise.models.xtransformers import Encoder
|
|
|
|
import tortoise.utils.torch_intermediary as ml
|
|
|
|
from tortoise.utils.device import print_stats, do_gc
|
|
|
|
def exists(val):
|
|
return val is not None
|
|
|
|
|
|
def masked_mean(t, mask, dim = 1):
|
|
t = t.masked_fill(~mask[:, :, None], 0.)
|
|
return t.sum(dim = 1) / mask.sum(dim = 1)[..., None]
|
|
|
|
class CLVP(nn.Module):
|
|
"""
|
|
CLIP model retrofitted for performing contrastive evaluation between tokenized audio data and the corresponding
|
|
transcribed text.
|
|
|
|
Originally from https://github.com/lucidrains/DALLE-pytorch/blob/main/dalle_pytorch/dalle_pytorch.py
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
*,
|
|
dim_text=512,
|
|
dim_speech=512,
|
|
dim_latent=512,
|
|
num_text_tokens=256,
|
|
text_enc_depth=6,
|
|
text_seq_len=120,
|
|
text_heads=8,
|
|
num_speech_tokens=8192,
|
|
speech_enc_depth=6,
|
|
speech_heads=8,
|
|
speech_seq_len=250,
|
|
text_mask_percentage=0,
|
|
voice_mask_percentage=0,
|
|
wav_token_compression=1024,
|
|
use_xformers=False,
|
|
):
|
|
super().__init__()
|
|
# nn.Embedding
|
|
self.text_emb = ml.Embedding(num_text_tokens, dim_text)
|
|
# nn.Linear
|
|
self.to_text_latent = ml.Linear(dim_text, dim_latent, bias=False)
|
|
|
|
# nn.Embedding
|
|
self.speech_emb = ml.Embedding(num_speech_tokens, dim_speech)
|
|
# nn.Linear
|
|
self.to_speech_latent = ml.Linear(dim_speech, dim_latent, bias=False)
|
|
|
|
if use_xformers:
|
|
self.text_transformer = CheckpointedXTransformerEncoder(
|
|
needs_permute=False,
|
|
exit_permute=False,
|
|
max_seq_len=-1,
|
|
attn_layers=Encoder(
|
|
dim=dim_text,
|
|
depth=text_enc_depth,
|
|
heads=text_heads,
|
|
ff_dropout=.1,
|
|
ff_mult=2,
|
|
attn_dropout=.1,
|
|
use_rmsnorm=True,
|
|
ff_glu=True,
|
|
rotary_pos_emb=True,
|
|
))
|
|
self.speech_transformer = CheckpointedXTransformerEncoder(
|
|
needs_permute=False,
|
|
exit_permute=False,
|
|
max_seq_len=-1,
|
|
attn_layers=Encoder(
|
|
dim=dim_speech,
|
|
depth=speech_enc_depth,
|
|
heads=speech_heads,
|
|
ff_dropout=.1,
|
|
ff_mult=2,
|
|
attn_dropout=.1,
|
|
use_rmsnorm=True,
|
|
ff_glu=True,
|
|
rotary_pos_emb=True,
|
|
))
|
|
else:
|
|
self.text_transformer = Transformer(causal=False, seq_len=text_seq_len, dim=dim_text, depth=text_enc_depth,
|
|
heads=text_heads)
|
|
self.speech_transformer = Transformer(causal=False, seq_len=speech_seq_len, dim=dim_speech,
|
|
depth=speech_enc_depth, heads=speech_heads)
|
|
|
|
self.temperature = nn.Parameter(torch.tensor(1.))
|
|
self.text_mask_percentage = text_mask_percentage
|
|
self.voice_mask_percentage = voice_mask_percentage
|
|
self.wav_token_compression = wav_token_compression
|
|
self.xformers = use_xformers
|
|
if not use_xformers:
|
|
# nn.Embedding
|
|
self.text_pos_emb = ml.Embedding(text_seq_len, dim_text)
|
|
# nn.Embedding
|
|
self.speech_pos_emb = ml.Embedding(num_speech_tokens, dim_speech)
|
|
|
|
def forward(
|
|
self,
|
|
text,
|
|
speech_tokens,
|
|
return_loss=False
|
|
):
|
|
b, device = text.shape[0], text.device
|
|
if self.training:
|
|
text_mask = torch.rand_like(text.float()) > self.text_mask_percentage
|
|
voice_mask = torch.rand_like(speech_tokens.float()) > self.voice_mask_percentage
|
|
else:
|
|
text_mask = torch.ones_like(text.float()).bool()
|
|
voice_mask = torch.ones_like(speech_tokens.float()).bool()
|
|
|
|
text_emb = self.text_emb(text)
|
|
speech_emb = self.speech_emb(speech_tokens)
|
|
|
|
if not self.xformers:
|
|
text_emb += self.text_pos_emb(torch.arange(text.shape[1], device=device))
|
|
speech_emb += self.speech_pos_emb(torch.arange(speech_emb.shape[1], device=device))
|
|
|
|
|
|
text_latents = self.to_text_latent(masked_mean(self.text_transformer(text_emb, mask=text_mask), text_mask, dim=1))
|
|
|
|
# on ROCm at least, allocated VRAM spikes here
|
|
do_gc()
|
|
speech_latents = self.to_speech_latent(masked_mean(self.speech_transformer(speech_emb, mask=voice_mask), voice_mask, dim=1))
|
|
do_gc()
|
|
|
|
text_latents, speech_latents = map(lambda t: F.normalize(t, p=2, dim=-1), (text_latents, speech_latents))
|
|
|
|
temp = self.temperature.exp()
|
|
|
|
if not return_loss:
|
|
sim = einsum('n d, n d -> n', text_latents, speech_latents) * temp
|
|
return sim
|
|
|
|
sim = einsum('i d, j d -> i j', text_latents, speech_latents) * temp
|
|
labels = torch.arange(b, device=device)
|
|
loss = (F.cross_entropy(sim, labels) + F.cross_entropy(sim.t(), labels)) / 2
|
|
return loss
|
|
|
|
|
|
if __name__ == '__main__':
|
|
clip = CLVP(text_mask_percentage=.2, voice_mask_percentage=.2)
|
|
clip(torch.randint(0,256,(2,120)),
|
|
torch.tensor([50,100]),
|
|
torch.randint(0,8192,(2,250)),
|
|
torch.tensor([101,102]),
|
|
return_loss=True)
|
|
nonloss = clip(torch.randint(0,256,(2,120)),
|
|
torch.tensor([50,100]),
|
|
torch.randint(0,8192,(2,250)),
|
|
torch.tensor([101,102]),
|
|
return_loss=False)
|
|
print(nonloss.shape) |